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ABSTRACT 
 
Accurate forecasts of greenhouse gas (GHG) emissions are crucial for addressing climate 
change and guiding effective mitigation strategies. We developed and tested advanced 
techniques to improve time-series GHG emissions forecasting, addressing the limitations of 
existing models. Our study explored various algorithms, including ARIMA, SARIMA, ETS, 
Prophet, and TBATS, to identify the most effective methods for capturing the complex 
seasonality and non-linear patterns in GHG data particular to the city of Port Harcourt, Rivers 
State Nigeria. We tested the stationarity of the time series using ADF and KPSS tests. The ETS 
model, selected for its ability to handle trend and seasonal components, was optimized using 
grid search and the Akaike Information Criterion (AIC). We then compared its performance 
with ARIMA, SARIMA, Prophet, and TBATS models. The ETS model outperformed the 
others, with predicted CO₂ values within the 95% confidence interval of observed data and a 
mean absolute error (MAE) of 14.82 and a root-mean-square error (MSE) of 18.91. This 
research marks a significant advancement in GHG emissions forecasting, underscoring the 
practical value of well-tuned models in environmental science and their relevance to policy 
decisions. Future work should focus on refining these models for real-time use, ensuring a 
balance between computational efficiency and predictive accuracy to provide actionable 
insights for policymakers and environmental scientists. 
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INTRODUCTION 
Anticipating greenhouse gas (GHG) emissions is essential for devising effective strategies to 
mitigate climate change. In 2023, the International Energy Agency (IEA) reported a 1.1% 
increase in global energy-related CO₂ emissions, reaching a record high of 37.4 gigatonnes (Gt) 
(IEA, 2023). This underscores the importance for climate mitigation authorities to deeply 
understand current and future emissions trends in order to develop and implement effective 
countermeasures. This paper reviews predictive models and algorithms used for GHG 
emissions forecasting, examining their strengths and weaknesses as highlighted in previous 
studies. The focus is on understanding how research into these inefficiencies can guide 
improvements in forecasting accuracy. 
 
Greenhouse gases (GHGs) are atmospheric gases that trap and re-emit infrared radiation, 
causing the greenhouse effect. While this effect is crucial for maintaining life-sustaining 
temperatures on Earth, human activities such as burning fossil fuels and deforestation have 
significantly increased GHG emissions, leading to global warming and climate change (British 
Geological Survey, 2023). Carbon dioxide (CO₂), the primary greenhouse gas, is largely 
produced by burning fossil fuels like coal, oil, and natural gas, as well as through industrial 
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processes (Nutongkaew et al., 2014). Methane (CH₄), another potent GHG, primarily originates 
from coal, oil, and natural gas production, as well as from agricultural activities such as 
livestock digestion and manure decomposition (Smith et al, 2021). Nitrous oxide (N₂O) 
emissions come from sources like fossil fuel combustion, agricultural processes, and waste 
treatment (Overview of Greenhouse Gases | US EPA, 2024). As these gases accumulate in the 
atmosphere, they intensify the greenhouse effect, trapping more heat and causing global 
temperatures to rise, which in turn leads to environmental consequences such as rising sea 
levels, shifting weather patterns, and more frequent and severe storms. 
 
Forecasting future trends is a crucial aspect of environmental science, as it allows for the 
extrapolation of current data to predict future outcomes. Forecasting involves analyzing past 
and present data using methods like time series analysis, regression analysis, or machine 
learning algorithms (Bodily et al., 2024). Accurate forecasts are vital for making informed 
decisions across various fields, including business, weather prediction, supply chain 
management, and environmental planning. In environmental science, time series analysis is 
particularly valuable for examining data trends over time, such as GHG emissions. This type 
of analysis uses statistical methods to identify patterns like trends and seasonality within a 
sequence of data points recorded over time. Common models used for time series forecasting 
include Autoregressive Integrated Moving Average (ARIMA), Exponential Smoothing, and 
Seasonal Decomposition of Time Series (STL) (Adhikari et al, 2013). These models are 
essential tools for predicting future GHG emissions and other environmental variables. 
 
The aim of our research is to explore various algorithms, including ARIMA, SARIMA, ETS, 
Prophet, and TBATS, to identify the most effective methods for capturing the complex 
seasonality and non-linear patterns in GHG data. 
 
Seasonality, a key feature of time series data, refers to regular, periodic fluctuations that occur 
at specific intervals, such as weekly, monthly, or quarterly. Recognizing seasonality is crucial 
for accurate forecasting, as it can significantly impact the interpretation of data and the 
accuracy of predictions. For instance, businesses often experience predictable seasonal 
variations in sales, which must be accounted for when forecasting future performance. 
 
LITERATURE REVIEW 
The aim of our research is to address the limitations and gaps in current forecasting models for 
greenhouse gas (GHG) emissions, as highlighted in recent studies. Zhang et al. (2019) utilized 
ARIMA and SARIMA models to forecast CO₂ emissions in China, finding that SARIMA 
provided more accurate forecasts by better capturing seasonality. However, these models 
struggled with non-linear patterns and sudden changes in emission trends. Wang et al. (2020) 
applied an Artificial Neural Network (ANN) to forecast GHG emissions in the U.S., effectively 
modeling complex non-linear relationships for long-term forecasting. However, this approach 
required a large training dataset and significant computational resources. 
 
Li et al. (2021) used Support Vector Machines (SVM) for predicting CO₂ emissions in India. 
The SVM model demonstrated good accuracy and robustness, particularly in handling high-
dimensional datasets, making it well-suited for regions with heterogeneous emission sources. 
Pao et al. (2018) developed a hybrid ARIMA-ANN model for GHG emissions prediction in 
Taiwan, achieving higher accuracy by simultaneously detecting linear and non-linear patterns 
in the data. Similarly, Chen et al. (2020) combined wavelet transforms with ANN to model 
CO₂ emissions in South Korea, effectively capturing short-term fluctuations and long-term 
trends. 
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In the United Kingdom, Taylor and Letham (2018) employed the Prophet model to predict CO₂ 
emissions, finding it effective even in the presence of missing data and seasonal variations. De 
Livera et al. (2011) utilized the TBATS model to forecast GHG emissions in Australia, 
successfully capturing complex cyclical patterns for long-term, high-quality forecasts. 
 
Despite these advancements, several gaps remain in GHG emissions forecasting. First, there is 
a limited integration of multiple data sources, with existing models typically relying on single 
data sources with restricted sample sizes or geographical scopes. This can lead to misleading 
conclusions. Integrating diverse data sources, such as historical emissions, economic 
indicators, and environmental variables, could enhance the robustness of these models. 
Additionally, there are challenges in comparing various models, as many studies focus on a 
single model without methodically evaluating multiple options to determine the best fit for the 
data and domain. 
 
Scalability and computational efficiency are also significant concerns, as some machine 
learning models are too computationally expensive for real-time applications. Research should 
focus on optimizing these models to ensure they can scale without losing accuracy. Finally, 
while models like SARIMA address seasonality, they often struggle with more subtle, nuanced 
patterns. Advanced models such as the Exponential Smoothing State Space Model (ETS), 
Prophet, and TBATS offer better handling of seasonality and should be considered for future 
research. 
 
Our research explores the under-listed forecasting models and algorithms used for predicting 
greenhouse gas (GHG) emissions, highlighting their strengths, limitations, and suitability for 
different types of data. 
 
The Autoregressive Integrated Moving Average (ARIMA) model is a commonly used method 
that combines autoregression, differencing, and moving averages. It is effective for short-term 
forecasts, particularly for time series data with linear trends. The ARIMA model can be 
mathematically expressed as: 
 

(1 −  ϕ1B −  ϕ2B2  −  ⋯  −  ϕpBp)(1 − B)dyt = (1 + θ1B +  θ2B2 + ⋯+ θqBq)εt 
Where: 

- ytis the current value of the series. 
- ϕi for i =  1, 2,⋯ , p)are the autoregressive parameters. 
- θi for i =  1, 2,⋯ , p) are the moving average parameters. 
- B is the lag operator. 
- εt is the white noise error term. 

 
However, ARIMA struggles with capturing seasonal variations and non-linear patterns, which 
are often present in GHG emission data. 
To address ARIMA's limitations in dealing with seasonality, the Seasonal ARIMA (SARIMA) 
model was developed. SARIMA extends ARIMA by incorporating seasonal differencing and 
additional parameters to model seasonal components of the time series. The SARIMA model 
is expressed as: 
 

ϕp(B)ΦP(Bs)(1 − B)d(1 − Bm)Dyt = θq(B)ΘQ(Bm)εt 
Where: 

- ΦP and ΘQare seasonal autoregressive and moving average coefficients, respectively. 
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- m represents the number of time steps in a seasonal period. 
 
This model is more suitable for forecasting GHG emissions, which often exhibit seasonal 
fluctuations. Despite this improvement, SARIMA still faces challenges in capturing non-linear 
trends and sudden changes in emission patterns. 
The Exponential Smoothing State Space Model (ETS) provides a flexible approach to 
forecasting by considering error, trend, and seasonality components. The ETS model is 
represented by: 

yt = lt−1 + bt−1 + εt 
lt = lt−1 + bt−1 + αεt 

bt = bt−1 + βεt 
Where: 

- lt and btare the level and trend components. 
- α and β are smoothing parameters. 

 
ETS adapts to changes in seasonal patterns over time, making it useful for forecasting GHG 
emissions with varying seasonal characteristics. 
For more complex seasonal patterns and non-linearities in time series data, the Trigonometric 
Box-Cox ARMA Trend Seasonal (TBATS) model is particularly effective. The TBATS model 
uses trigonometric functions to capture seasonality and a state-space approach for parameter 
estimation. The model is represented as: 
 

yt(λ) = lt + ϕbt + �γt,k

m

k=1

+ dt + ϵt 

Where: 
- γt,k are the trigonometric seasonal components. 
- -dt is the ARMA error term. 

 
This makes TBATS a promising framework for GHG emissions forecasting, especially when 
dealing with complex seasonal patterns. 
Prophet, developed by Facebook, is a user-friendly forecasting tool designed for non-experts. 
It models non-periodic changes in time series data using a piecewise linear or logistic growth 
curve, while also accounting for seasonal variations and holiday effects. The Prophet model is 
expressed as: 
 

y(t)  =  g(t)  +  s(t)  + εt 
Where: 

- g(t)  represents non-periodic changes. 
- s(t) captures periodic changes. 

 
In summary, each of these models—ARIMA, SARIMA, ETS, TBATS, and Prophet—offers 
unique strengths and weaknesses for forecasting GHG emissions. ARIMA and SARIMA work 
well for simpler, linear time series with or without seasonality, while ETS offers flexibility for 
changing seasonal patterns. TBATS is ideal for handling complex seasonalities and non-
linearities, making it suitable for more intricate datasets. Prophet balances flexibility and ease 
of use, catering to diverse seasonal and trend variations. Collectively, these models provide a 
comprehensive toolkit for addressing the challenges in forecasting GHG emissions, with each 
model offering specific advantages based on the data and forecasting needs. 
. 
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METHODOLOGY 
The above-discussed models were developed and implemented using Python in Google Colab, 
leveraging various statistical libraries for their construction and evaluation. Google Colab 
facilitated the creation of a cloud-based research platform. The libraries utilized include 
Numpy, Python, Scikit-learn, and Statsmodels. Figures 1 and 2 illustrate the framework and 
machine learning process as follows: 

 
Figure 1: Machine learning framework. (Surakhi, O et al., 2021) 

 

 
Figure 2: Flow Diagram for Model Building and Evaluation 

Problem Domain 
We defined our problem domain as evaluating the effectiveness of the specified time series 
models for the chosen location of Port Harcourt, Rivers State, Nigeria. 
 
Data Collection  
  - The next step was to initiate data collection. 
  - Data was gathered continuously over several months to capture both short-term fluctuations 
and long-term trends in greenhouse gas emissions. 
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Dataset Composition 
 The dataset includes: 
    - Timestamps: Recorded as the survey date. 
    -CO₂ Concentration Levels: Measured in parts per million (ppm). 
    - Locations: Geographical areas in Port Harcourt where the data was obtained. 
 
Critical Columns for Analysis 
  1. Location: Specific geographical areas in Port Harcourt, Rivers State, Nigeria, where 
measurements were taken, including: 
     - Eleme Junction 
     - Rumuola 
     - Borikiri 
     - Mile 1 
     - Choba Junction 
     - Mile 3 
     - Garrison 
     - Artillery 
  2. Date: The recorded dates during measurement, facilitating time-series analysis. 
  3. CO₂ ppm: The concentration of carbon dioxide in parts per million, which is the primary 
focus of the study. 
 
Dataset Overview 
  - The dataset consists of 2,920 entries, enabling extensive statistical analysis and reliable 
forecasting. 
  - It captures typical variations in CO₂ levels influenced by specific emission sources. 
  - A snippet of the dataset is shown in Fig. 3 below. 

 
Figure 3: Dataset Overview 

Data Cleaning 
- Library Used: The Pandas library in Python was utilized for data cleaning and handling 

missing values. 
- Data Cleaning Outcome: 
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o After applying data cleaning techniques, the dataset was confirmed to be clean 
with no missing values (as shown in Fig. 4). 

o The data type of the date column was converted to a date-time format to ensure 
proper analysis. 

 
Figure 4: Data Cleaning with Python 

Stationarity Test 
- Importance of Stationarity: 

o In time series analysis, stationarity is crucial as it ensures that the statistical 
properties of the dataset, such as mean and variance, remain consistent over 
time. 

- Stationarity Validation: 
o To validate the stationarity of our dataset, we employed two widely recognized 

statistical tests: 
o Augmented Dickey-Fuller (ADF) Test: Checks for unit roots in the time series 

data, which would indicate non-stationarity. 
o Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test: Complements the ADF test 

by testing the null hypothesis that the time series is stationary around a 
deterministic trend. 

- Test Results: 
o The dataset was found to be non-stationary and required transformation to 

achieve stationarity for model building. 
o The implementation of these tests in Python is illustrated in Fig. 5. 

 

 
Figure 5: Stationarity Test in Python 
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Converting Non-Stationary Data to Stationary 
Goal: To ensure the time series data becomes stationary, making it suitable for time series 
analysis techniques. 
Method:  

- Exponential Smoothing: Applied to convert non-stationary data into stationary data. 
o Stationary data has a constant mean, variance, and autocorrelation structure over 

time. 
o The data from multiple locations was processed separately, ensuring the 

stationarity transformation was applied individually to each subset. 
- Smoothing Technique: 

o Exponential smoothing assigns decreasing weights to past observations. 
o Alpha (Smoothing Factor): Controls the rate at which the weights decrease, with 

higher alpha values discounting older observations more rapidly. 
o This technique helps smooth out short-term fluctuations and highlights longer-

term trends or cycles. 
- Outcome: As shown in Fig. 6, the data was successfully converted to stationary using 

exponential smoothing. 

 
Figure 6: Making Data Stationary with Python 

Model Building 
Dataset Split: 

- The dataset was divided into 60:20:20 ratios for training, testing, and validation. 
Parameter Specification Techniques: 
  1. Grid Search:  

- A systematic approach to exploring multiple combinations of parameter settings. 
- Cross-validation was used to identify the best-performing parameters. 

  2. Akaike Information Criterion (AIC): 
- A model selection criterion that assesses the goodness of fit while penalizing for the 

number of parameters, helping prevent over-fitting. 
Models Evaluated: 
  1. ARIMA (Autoregressive Integrated Moving Average): 

- Captures autocorrelations but struggles with seasonality and non-linear patterns. 
  2. SARIMA (Seasonal ARIMA): 

- Extends ARIMA to handle seasonality by incorporating seasonal differencing. 
  3. ETS (Error, Trend, Seasonal): 

- Addresses error, trend, and seasonal components, providing flexibility in forecasting. 
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  4. TBATS (Trigonometric Box-Cox ARMA Trend Seasonal): 
- Designed for complex seasonal patterns and non-linearity. 

  5. Prophet: 
- Developed by Facebook, this model handles seasonality and trends effectively and is 

robust to missing data. 
Model Selection: 

- ETS Model: Chosen for its ability to handle both trend and seasonal components and 
residual white noise in the data (Fig. 7). 

- Parameter Optimization: Grid search and AIC were used to select the best parameters 
for the ETS model. 

Model Comparison: 
- The ETS model was compared with ARIMA, SARIMA, Prophet, and TBATS models 

using various metrics: 
- Mean Absolute Error (MSE) 
- Root Mean Squared Error (RMSE) 
- Mean Absolute Percentage Error (MAPE) 
- Accuracy 

 

 
Figure 7: Model Building with Python 

Model Evaluation 
Training and Validation: 
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- Models were trained on historical data and validated on a separate set to assess their 
predictive capabilities. 

Evaluation Metrics: 
  1. Mean Squared Error (MSE): 

- Measures the average squared difference between the predicted and actual values. 
- Formula: MSE = 1

n
∑ |yi − y�i|2n
i=1  

  2. Root Mean Squared Error (RMSE): 
- The square root of MSE, measuring the average magnitude of the errors. 

- Formula: RMSE =  √MSE = �1
n
∑ |yi − y�i|2n
i=1  

- RMSE is sensitive to outliers, giving higher weight to significant errors. 
  3. Mean Absolute Percentage Error (MAPE): 

- Measures the average absolute percentage error between the actual and predicted 
values. 

- Formula: MAPE = 1
n
∑ ∣ yi−y�i

y�i
∣n

i=1 × 100% 
- Expressed as a percentage, with lower values indicating better model accuracy. 

  4. Accuracy: 
- Measures the proportion of correct predictions made by the model. 
- Formula: Accuracy = TP+TN

total
 

- Higher accuracy indicates a greater proportion of correct predictions. 
 
Implementation: 

- Model evaluation was implemented using the Scikit-learn library, as shown in Fig. 8. 
- The data was looped through various models and locations to gather metrics per model 

and location for effective comparison. 

 
Figure 8: Model Evaluation with Python 
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RESULTS  
Table 1: Table of Results of Model Comparison 

Location 
ARIMA 
MAE 

ARIMA 
RMSE 

SARIMA 
MAE 

SARIMA 
RMSE 

ETS 
MAE 

ETS 
RMSE 

TBATS 
MAE 

TBATS 
RMSE 

Prophet 
MAE 

Prophet 
RMSE 

Artillery 8.189929 9.414434 5.216727 6.434587 6.51589 7.745816 8.643169 9.87898 7.011866 8.023718 

Borikiri 8.979762 10.19451 17.7717 20.46139 11.50804 13.19589 7.498978 8.707972 10.5312 12.19623 

Choba 
Junction 8.602403 10.06618 3.967416 4.918523 4.865188 5.939162 7.37256 8.646515 5.651794 6.893803 

Eleme 
Junction 26.00788 30.18519 17.49246 20.36282 17.81341 20.42345 16.91294 19.68541 15.80758 17.83459 

Garrison 28.59987 34.67196 33.50029 40.94301 23.54225 28.73655 34.28987 41.60041 28.08073 33.88046 

Mile 1 4.845608 5.689214 5.609525 6.64158 5.573555 6.474243 4.342932 5.189522 6.918413 8.029042 
Mile 3 18.932 22.34101 29.793 35.9177 29.51151 35.51097 26.99706 32.71751 24.68793 30.23852 

Rumuola 3.018585 3.744976 3.169828 3.913105 3.934054 4.959352 3.195726 3.90882 6.205812 7.437275 

Average 13.397 15.78843 14.56512 17.44909 12.90799 15.37318 13.65665 16.29189 13.11192 15.5667 
 

 
Figure 9: Plot of emissions over time 

 

 
Figure 10: BoxPlot Of Emissions According to locations 

 

 
Figure 11: Stationarity test Results 
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Figure 12: Seasonal Decomposition 

 
Figure 13: MAPE for Model Comparison 

 

 
Figure 14: RMSE for Model Comparison 
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Figure 15: MAE for Model Comparisons 

 

 
Figure 16: Forecast Example 

DISCUSSION 
 
The analysis of CO₂ emissions data revealed clear trends and patterns, with an upward trend 
observed across all the areas studied. This consistent increase in emissions over the years is 
likely due to a combination of factors, including ongoing industrial activities, population 
growth, and other human-driven activities that contribute to greenhouse gas emissions. The 
data underscores a crucial point: CO₂ emissions are continuing to rise. 
 
When evaluating the seasonal decomposition plots alongside the CO₂ emissions data, it became 
evident that each study area exhibited similar seasonal patterns. These variations are likely 
influenced by factors such as weather changes, industrial production cycles, and other 
environmental conditions. Understanding these seasonal patterns is essential, as it allows us to 
identify when emissions typically increase during different times of the year. 
 
In terms of model performance, a detailed analysis revealed that ARIMA and SARIMA models 
performed well in certain locations but struggled in others. Similar inconsistencies were 
observed with the TBATS and Prophet models. However, the ETS model consistently 
delivered strong performance across all locations, effectively capturing errors, seasonality, and 
trends better than the other models. While SARIMA was also effective in some cases, it 
performed poorly with data from specific locations. 



European Journal of Engineering and Technology                               Vol. 12 No. 1, 2024
          ISSN 2056-5860 

Progressive Academic Publishing, UK   Page 39  www.idpublications.org 

The ETS model proved to be highly accurate in predicting future CO₂ emissions, with a mean 
absolute error (MAE) of 14.82 and a root mean square error (MSE) of 18.91, as detailed in 
Table 1. The model's performance was thoroughly evaluated using established metrics, as 
shown in Figures 12, 14, and 15. The model parameters were selected through grid search and 
validated using the Akaike Information Criterion (AIC) to ensure an optimal balance between 
model complexity and accuracy. When comparing ETS model predictions to actual CO₂ 
concentrations, the results were notably accurate, with predicted values falling within the 95% 
confidence interval of the differences between measured and predicted concentrations. 
 
CONCLUSIONS 
This work has significantly advanced environmental forecasting by rigorously evaluating and 
enhancing algorithms pertinent to predicting greenhouse gas emissions. We demonstrated that 
the limitations found in traditional approaches are often inherent and that advanced forecasting 
methods, such as ETS and TBATS, offer substantial improvements in modeling greenhouse 
gas time series. These methods are particularly effective in capturing complex seasonal patterns 
and non-linear dynamics while maintaining a comparable level of complexity. Conducting a 
comparative analysis of different models before selecting the final one for deployment is 
crucial to ensuring accurate, data-driven predictions. 
 
Beyond the immediate goal of modeling complex climate phenomena, there is a compelling 
need for robust and effective environmental forecasting models like the ones discussed here. 
In an era where climate science increasingly influences political discourse—demanding 
scientifically informed debates among decision-makers about the best strategies for addressing 
climate challenges—predictive models will be instrumental in shaping policy. Moving 
forward, the priority should be to further refine these models, optimizing the balance between 
computational efficiency and predictive accuracy. This optimization will enable real-time 
deployment, making these models a valuable tool for policymakers and environmental 
scientists aiming to mitigate the effects of climate change through informed, timely 
interventions. 
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