FLORISTIC ANALYSIS OF RIPARIAN ZONES AT THE ANGEUM RIVER, HAPCHEON-GUN, KOREA

Man-Kyu, Huh Dong-eui University SOUTH KOREA mkhuh@deu.ac.kr

ABSTRACT

Riparian zones are an interface between terrestrial and aquatic ecosystems and play a critical role in supporting biota and biodiversity. This study was carried out on the Angeum River in Korea. A quadrat delimits an area in which vegetation cover can be estimated, plants counted, or species listed. According to the existing phytosociological data, the survey area was a total of 76 taxa, including 20 families, 55 genera. Naturalized plants were 24 species. The dominant species (according to cover and frequency) that occur in the upper area of this river are *Setaria viridis* and *Zoysia japonica*. The dominant species of left and right riparian areas at middle area was Gramineae vegetation (*Zoysia japonica*). The dominant vegetation of low water's edge at low area was *Brassica vampestris* var. *nippo-oleifera*. Braun-Blanquet value at upper, middle, and low areas were 2,155.6, 3,077.8, respectively. The total transformed Braun-Blanquet value and r-NCD at middle area were 172 and 2,700.0, and 2,700.0, respectively. This study was described as attempts to address by using a sample field data for assessment and prediction of the ecological effects of natural or human-caused changes in the rural small river.

Keywords: Angeum River, Braun-Blanquet, biota, riparian zones.

INTRODUCTION

Rivers have been the focus of human activity since the early civilizations. Even in modern times a large number of activities of the engineers such as water supply, irrigation, water quality control, power generation, flood control, river regulation, navigation and recreation are centered around rivers (Garde, 2006).

It would be convenient if the component activities of agriculture could be simply and quantitatively related to their impacts on freshwater systems (Moss, 2008). This would be an ideal basis for creating legislation, for designing incentive schemes to optimize agricultural practice and for minimizing environmental consequences. However, it is far from possible. Both agricultural and freshwater systems are complex and the relationships between them make a mesh of many dimensions.

Riparian zones are open systems, dynamically linked longitudinally, laterally and vertically by hydrological and geomorphic process and vegetation succession (Gregory et al., 1991). Riparian areas occur along many types of waterways, including streams, meadows, flood plains, marshes, springs, and lake shores. They composed of land and water forming a transition from aquatic to terrestrial ecosystems. One of the most perplexing issues in river ecology involves the definition and delineation of riparian zones and their associated vegetation (Verry et al.,

2004). A remarkable number of recent scientific studies have proven the outstanding importance of riparian vegetation for maintaining a rich and distinctive biodiversity (Poiani et al., 2000; Arizpe et al., 2008). Habitat diversity within riparian and flood plain environments is related to the regular and repeated rejuvenation of successions associated with disturbance (Petts, 1990). I assume that the primary question underlying monitoring is to ask whether biodiversity is changing over time and collecting sites of a river.

The aim of this study is to present a total riparian floristic survey of the Angeum River in a typical, small-sized, southern Korean rural area. Objectives were to analyze and describe the biological indices including species diversity, richness, and evenness.

METHODOLOGY

Surveyed areas

Riparian habitats and stream side zones should be managed on a highly individualistic basis, taking into account terrain, soils, plant communities. This study was carried out on the Angeum River (the starting point of upper area: 35°29′245″N/128°11′924″E, the terminal of low area: 35°30′351″N/128°10′330″E), located at Hapcheon-gun, Gyeongsangnam-do province in Korea (Fig. 1). The river is approximately 3.8 kilometers in length with a varying width of between 1.5 and 16.2 meters. Lowlands are usually no higher than 110 m (360 ft), while uplands are somewhere around 310 m (1,170 ft) to 380 m (1,247 ft).

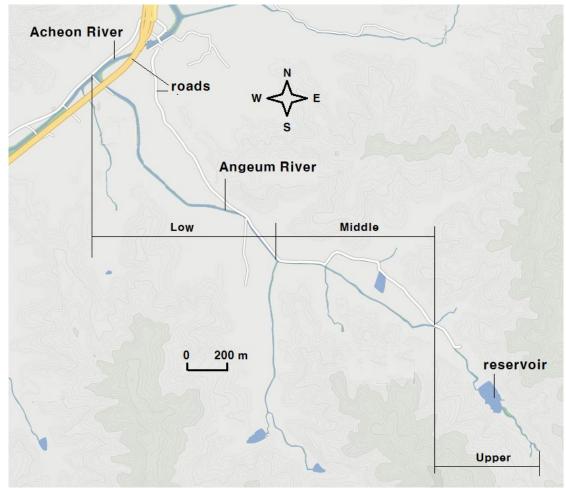


Figure 1: Location of the study area and the three detailed internodes at the Angeum River.

Floristic analysis

Data recorded on various parameters were subjected to phytosociological analysis. The simplest floristic analysis is a list of names of plants occurring in a sample quadrat of a certain size in a homogeneous representative part of the vegetation to be described.

Sampling with quadrats (plots of a standard size) can be used for most plant communities (Cox, 1990). Three sectors of the riparian vegetation on the Angeum River were chosen to study. The following floristic parameters were recorded within each of the quadrats: all plant taxa, identifiable at the time of sampling, rooted in the stand, a growth form (tree, shrub, grass and forb) was assigned to each species recorded following Westfall (1992). A quadrat delimits an area in which vegetation cover can be estimated, plants counted, or species listed. Quadrats were established randomly, regularly, or subjectively within a study site since plants often grow in clumps, long, narrow plots often include more species than square or round plots of equal area (Moon and Huh, 2016). Each species was collected, mounted, labeled, and systematically arranged in a herbarium. The system of plant classification system was followed by Lee (2007). The identifications of naturalized plants were followed by Korea National Arboretum (2012). Abundance and cover degree are usually estimated together in a single combined estimation or cover-abundance scale from Braun-Blanquet (1964). Two scales are used. One consists of a plus sign and a series of numbers from 1 to 5 denoting both the numbers of species and the proportion of the area covered by that species, ranging from + (sparse and covering a small area) to 5 (covering more than 75% of the area). The second scale indicates how the species are grouped and ranges from Soc. 1 (growing singly) to Soc. 5 (growing in pure populations). In order to relate the model to the field situation in which usually Braun-Blanquet figures are recorded, the % occupancy figures were transformed in to the ordinal transform scale from 1 (one or few individuals) to 9 (75~100% cover of total plot area, irrespective of number of individuals) (Dietvorst et al., 1982). The relative net contribution degree (r-NCD) was obtained by summing up the NCD values for those species belonging to particular taxa under consideration (Kim, 1996).

Biotic Indices

Various indices of diversity were calculated using Shannon-Wiener diversity index (H') (Shannon and Weaer, 1963), Simpson's index of diversity (N) (Simpson, 1949), Simpson's index of dominance (Simpson, 1949), Margalef Richness index (Magurran, 1988), Evenness index (Hill, 1973; Pielou, 1966).

Jaccard's Index of Similarity (JIS) was used to assess differences/similarities among the three sites. $JIS = c/(a + b + c) \times 100$, where "c" is the number of common species, "a" is the number of species unique to site #1, and "b" is the number of species unique to site #2. For comparison, it was useful to apply another similarity test, Sorensen's Index of Similarity (SIS), SIS = $2c/(a + b + C) \times 100$, a where c = the number of species common to the two sites, a = the total number of species at a given site and b = the total number of species at the other site in the comparison.

RESULTS and DISCUSSION

Upper area

The mean river width at this area is about 1.5 m. The small rural stream with a riparian zone dominated by grasslands (grasses and herbs), with a narrow strip of trees and shrubs along the stream. At total area, the application of the Braun-Blanquet approach for plant classification in this area is presented in the article. The river width was relative large and the depth of water

was swallow and distributions of aquatic plants developed very well in riparian.

According to the existing phytosociological data, the survey area was a total of 47 taxa, including 14 families, 39 genera, 41 species, and six varieties (Table 1). Naturalized plants were seven species.

The dominant species (according to cover and frequency) that occur in the A area are *Setaria viridis* and *Zoysia japonica* (Table 2). The dominant vegetation of low water's edge was *Persicaria longiseta*. Dominant species in flood plains was *Humulus japonicus*. Other phyla were occasionally recorded in low densities. This land was used as farmland and crops were being grown. The total transformed Braun-Blanquet value and r-NCD at upper area were 112 and 2,155.6, respectively.

The value of cover-abundance was total 10.1 (Table 3). Cover-abundance values of trees and shrubs were 2.0 and 2.4, respectively. Cover-abundance values of grasses and forbs were 3.3 and 2.4, respectively. A Shannon-Weaver indices (H') of diversity were varied from 0.0 (trees) to 3.07 (forbs). For the community as a whole, richness of trees was very low (0.0). The total richness indices were varied from 1.61 (shrub) to 6.97 (forbs). The evenness indices were varied from 0.89 (forbs) to 0.98 (shrub) except trees. Although evenness indices were different from each other, there were not shown significant differences (p < 0.05). Naturalized index (NI) was varied from 1.8 (upper area) to 35.0% (low area) (Table 4). The urbanization index (UI) was varied from 1.8 (upper area) to 6.4 (low area). I calculated the pairwise similarity between all the presence in each species (Table 5). Areas A and C had the most similar plant species composition.

Middle area

The mean river width at the area is about 5.6 m. The survey area was a total of 61 taxa, including 16 families, 44 genera, 57 species, and four varieties. Naturalized plants were 16 species (Table 1). Riverbed area was dominated by the distribution of the willow (*Salix gracilistyla*). The vegetation of low water's edge was natural weeds, shrubs, and mixed. The dominant species of left and right riparian areas was Gramineae vegetation (*Zoysia japonica*) (Table 2). The dominant vegetation of low water's edge was *Persicaria hydropoper* and use in flood plains beyond river levee was dominated *Equisetum arvense*.

The total transformed Braun-Blanquet value and r-NCD at middle area were 126 and 3,077.8, respectively. The value of cover-abundance was total 11.5 (Table 3). A Shannon-Weaver indices (H') of diversity were varied from 0.0 (trees) to 3.6 (forbs). The total richness indices were varied from 1.89 (shrub) to 8.4 (forbs) except trees. The evenness indices were varied from 0.95 (grasses) 0.98 (forbs). Although evenness indices were different from each other, there were not shown significant differences (p < 0.05).

Low area

The mean river width at the area was about 16.2 m. Riverbed area was dominated by the distribution of the willow (three *Salix* species). The survey area was a total of 54 taxa, including 17 families, 38 genera, 49 species, and five varieties (Table 2). Naturalized plants were 21 species. The dominant species (according to cover and frequency) that occur in the A area are *Setaria viridis* and *Zoysia japonica*. The dominant vegetation of low water's edge was *Brassica vampestris* var. *nippo-oleifera*. The total transformed Braun-Blanquet value and r-NCD at low

area were 172 and 2,700.0, respectively.

The value of cover-abundance was total 8.98 (Table 3). A Shannon-Weaver index (H') of diversity was different across growth forms, varying from 0.69 (shrubs) to 3.73 (forbs) except trees (0.0). The total richness indices were varied from 1.24 (shrubs) to 7.87 (forbs) except trees. The evenness indices were varied from 0.63 (shrubs) 1.03 (forbs) except trees.

The spatial heterogeneity of environmental resources results in the variance seen in the spatial distribution of vegetation. Understanding the relationships between spatial and temporal environmental variation remains a fundamental challenge in ecology (Crone, 2016). Working with these assumptions, Moyle et al (1996) present three basic approaches to riparian management, recognizing that these approaches are highly generalized: (1) the low protection approach, (2) the moderate protection approach, and (3) the high protection approach. I recognize that under almost any circumstances, riparian management for the entire the Angeum River, or even for one watershed, is likely to be low protection approach among the three approaches. Under this approach, the highest value of stream side areas is for direct use: housing, road constructions, transportation corridors, grazing, and other factors.

Table 1: Information of vascular riparian plants, Braun-Blanquet value, and r-NCD at three						
areas of the Angeum River						
	Area	Total				

		Area				
	Upper	Middle	Low			
No. of family	14	16	17	20		
No. of genus	39	44	38	55		
No. of species	47	61	54	76		
No. of individuals per plot	36	30	41	107		
No. of NAT	7	16	21	24		
Braun-Blanquet value	112	126	172	637		
r-NCD	2,155.6	3,077.8	2,700.0	7,933.3		

NAT: Naturalized plants.

Vol. 9 No. 2, 2021

Eamily	Stragios		Area				r-NCD	
Family	Species	Upper	Middle	Low	plant	Upper	Middle	Low
Equisetaceae	Equisetum arvense L.	3	5	3		33.3	55.6	33.3
Salicaceae	Salix fragilisL.		3	2			33.3	22.2
	Salix gracilistyla Miq.		2	1			22.2	11.1
	Salix koriyanagi Kimura	2	1	2		22.2	11.1	22.2
Cannabinaceae	Humulus japonicus S. et Z.	4	1			44.4	11.1	
Urticaceae	Boehmeria longispica Steud.	3	2			33.3	22.2	
	Boehmeria spicata (Thunb.) Thunb.	2	3			22.2	33.3	
Polygonaceae	Persicaria hydropoper (L.) Spach.	3	5	2		33.3	55.6	22.2
	Persicaria longiseta (De Bruyn) Kitagawa	4	4	2		33.3	44.4	22.2
	Persicaria nodosa (Persoon) Opiz	2	2			22.2	22.2	
	Persicaria orientalis Spach			3				33.3
	Persicaria thunbergii H. Gross		3				33.3	
	Reynoutria japonica Houtt	2				22.2		
	Rumex acetocella L.		3	3	NAT		33.3	33.3
	Rumex acetosa L.	2	3	3		22.2	33.3	33.3
	Rumex conglomeratus Murr.	3	4	5	NAT	33.3	44.4	55.6
	Rumex crispus L.		2	2	NAT		22.2	22.2
	Rumex nipponicus Fr. et Sav.	2				22.2		
Chenopodiaceae	Chenopodium acuminatum Willd.	1	2	3		11.1	22.2	33.3
	Chenopodium album L.	1	1	1	NAT	11.1	11.1	11.1
	Chenopodium album var. centrorubrum Makino	2	4	4		22.2	44.4	44.4
Amaranthaceae	Achyranthes japonica (Miq.) Pa.	2	2			22.2	22.2	
	Amaranthus lividus L.		2	3	NAT		22.2	33.3
Phytolaccaceae	Phytolacca americana L.			2	NAT			22.2
Brassicaceae	Brassica juncea Czern	2	1			22.2	11.1	

Table 2: List of vascular plants, Braun-Blanquet's score, and r-NCD at three areas of the Angeum River

European Journal of Engineering and Technology

Vol. 9 No. 2, 2021

	Brassica vampestris var. nippo-oleifera Makino	3	4	5		33.3	44.4	55.6
	Capsella bursa-pastoris (L.) Medicus	2	2	2		22.2	22.2	22.2
	Lepidium apetalum Willd.		2	3	NAT		22.2	33.3
	Lepidium virginicum L.			2	NAT			22.2
	Thlaspi arvense L.		2	2	NAT		22.2	22.2
Caryophyllaceae	Arenaria serpyllifolia L.		3	3			33.3	33.3
	Stellaria aquatica (L.) Scop.		2	3			22.2	33.3
Rosaceae	Duchesnea chrysantha (Zoll. Et Morr) Miq.	2				22.2		
	Potentilla fragarioides var. major Max.	3				33.3		
	Prunus jamasakura Sieb.	2	3	1		22.2	33.3	11.1
	Rosa multiflora Thunb.	2	3			22.2	33.3	
Leguminosae	Glycine soja Sieb. et Zucc.	4				44.4		
	Kummerowia striata (Thunb.) Schindl.	2				22.2		
	Pueraria lobata (Willd.) Ohwi	3	3			33.3	33.3	
	Trifolium repens L.	3	4	3	NAT	33.3	44.4	33.3
	Vicia tetrasperma (L.) Moench		2		NAT		22.2	
Oxalidaceae	Oxalis corniculata L.		2	2			22.2	22.2
	Oxalis stricta L.			2				22.2
Violaceae	Viola patrinii DC.	1				11.1		
Onagraceae	Oenothera odorata Jacq.		2	2	NAT		22.2	22.2
Umbelliferae	Oenanthe javanica (Bl.) DC.			2				22.2
Plantaginaceae	Plantago asiatica L.	3	4	4		33.3	44.4	44.4
	Plantago laceolata L.		2	3	NAT		22.2	33.3
Compositae	Ambrosia artemisiifolia var. elatior Descourtils			2	NAT			22.2
	Artemisia princeps Pampan.	5	7	8		55.6	77.8	88.9
	Artemisia selengensis Turcz.		2	3			22.2	33.3
	Bidens bipinnata L.	3	2			33.3	22.2	
	Bidens frondosa L.			2	NAT			22.2
	Cirsium japonicum var. ussuriense Kitamura	1	2			11.1	22.2	

Progressive Academic Publishing, UK

European Journal of Engineering and Technology

Vol. 9 No. 2, 2021

	Cosmos bipinnatus Cav.		2	2	NAT		22.2	22.2
	Conyza canadensis L.	3	4	3	NAT	33.3	44.4	33.3
	Erechtites hieracifolia Raf.			2	NAT			22.2
	Erigeron annuas (L.) Pers.		3	3	NAT		33.3	33.3
	Galingosa ciliate Blake		2	2	NAT		22.2	22.2
	Petasites japonicus (Sieb. et Zucc.) Maxim.	2	2	2		22.2	22.2	22.2
	Tagetes minuta L.	2	3			22.2	33.3	
	Taraxacum officinale Weber	1	3	4	NAT	11.1	33.3	44.4
	Xanthium strumarium L.	2	2	2	NAT	22.2	22.2	22.2
Gramineae	Agropyron tsukusinense (Honda) Ohwi	2	3	3		22.2	33.3	33.3
	Alopecurus aequalis var. amurensis Ohwi.	3	2	2		33.3	22.2	22.2
	Beckmannia syzigachne (Steud.) Fern.		4	3			44.4	33.3
	Digitaria sanguinalis (L.) Scop.	5	4	2		55.6	44.4	22.2
	Echinochloa crus-galli (L.) Beauv.	2	4	4		22.2	44.4	44.4
	Miscanthus sacchariflorus Benth.		3	3			33.3	33.3
	Miscanthus sinensis var. purpurascens Rendle	2	3	3		22.2	33.3	33.3
	Phragmites japonica Steud.	2	3	2		22.2	33.3	22.2
	Poa sphondylodes Trin.	2	2			22.2	22.2	
	Setaria viridis (L.) Beauv.	6	5	6		66.7	55.6	66.7
	Zoysia japonica Steud.	6	9	9		66.7	100.0	100.0
Cyperaceae	Carex dimorpholepis Steud.		2				22.2	
	Carex neurocarpa Maxim.		1	1			11.1	11.1
NAT: Naturalize	ed plants.				·			

	-			-		-
Growth form	No. species (%)	Mean cover- abundance of species	Diversity (H`)	Diversity (N)	Richness	Evenness
Upper						
Trees	1 (2.1)	2.00	0.00	1.00	0.71	0.00
Shrubs	5 (10.6)	2.40	1.59	4.90	1.44	0.99
Grasses	10 (21.3)	3.30	2.19	8.95	1.74	0.95
Forbs	31 (66.0)	2.39	3.07	21.56	3.61	0.89
Total	47 (100.0)	10.09	-	-	-	-
Middle						
Trees	1 (1.9)	3.00	0.00	1.00	0.58	0.00
Shrubs	6 (9.8)	2.33	1.74	5.67	1.62	0.97
Grasses	14 (23.0)	3.50	2.52	12.40	2.01	0.95
Forbs	40 (65.6)	2.68	3.60	36.67	3.87	0.98
Total	61 (100)	11.51	-	-	-	-
Low						
Trees	1 (1.9)	1.00	0.00	1.00	1.00	0.00
Shrubs	3 (5.6)	1.67	0.69	1.96	1.34	0.63
Grasses	12 (22.2)	3.42	2.33	10.28	1.87	0.94
Forbs	38 (70.4)	2.89	3.73	41.62	3.62	1.03
Total	54 (100)	8.98	-	-	-	-

Table 3. Mean cove	er-abundance	of species and	diversity indices	s at the Angeum River
		01 0p 00100 miles		

Table 4: Naturalized index (NI) and urbanization index (UI) in the three study areas

Index		area	·	Total
	Upper	Middle	Low	
NI(%)	13.0	25.8	35.0	31.9
Ul(%)	1.8	5.2	6.4	6.8

Table 5: Index of similarity values comparing the three study areas

	1 8 9	
Area	Jaccard's (JIS	Sorensen's (SIS)
Upper and Middle	22.8	37.1
Upper and Low	27.2	42.7
Middle and Low	15.3	26.5

A, B, and C are the same as Table 2

REFERENCES

- Arizpe, D., Menders, A., & Rabaca, J.E. (2008) Sustainable riparian zones. A management guide. Generalitat Valenciana, Portugal.
- Braun-Blanquet, J. (1964) *Pflanzensoziologie, Grundzüge der Vegetationskunde* (3rd ed). New York: Springer, Wein.
- Cox, G. (1990) *Laboratory manual of generale ecology*, 6th ed., Dubuque, Iowa: WIlliam C. Brown.

- Crone, E.E. (2016) Constrasting effects of spatial heterogeneity and environmental stochasticity on population dynamics of a perennial wildflower. *Journal of Ecology*, 104, 281-291.
- Dietvorst, P., Maarel, V.D., & van der Putten, H. (1982) A new approach to the minimal area of a plant community. *Vegetario 50*, 77-91.
- Garde, R.J. (2006) River morphology. Oakland, Canada: New Age International Publishers.
- Gregory, S.V., Swanson, F.J., McKee, W.A., & Cummins, W.C. (1991) An ecosystem perspective of riparian zones. *BioScience*, 41, 540-51.
- Hill, M.O. (1973) Diversity and evenness: a unifying notation and its consequences. *Ecology*, *54*, 423-32.
- Kim, J.W. (1996) Floristic characterization of the temperature oak forests in the Korean Peninsula using high-rank taxa. *Journal of Plant Biology*, *39*, 149-59.
- Korea National Arboretum. (2012) *Field guide, naturalized plants of Korea.* Korea National Arboretum, Seoul, Korea.
- Lee, Y.N. (2007) New flora of Korea. Kyo-Hak Publishing Co., Seoul, Korea.
- Magurran, A.E. (1988) *Ecological diversity and its measurement*. Princeton University Press, Cambridge, USA.
- Moon, S.G., & Huh, M.K. (2016) River health and distribution of riparian at the tributary of Hakri River, Hapcheon-gun, Korea. *International Journal of Advanced Multidisciplinary Research*, *3*, 45-51.
- Moyle, P., Kattelmann, R., Zomer, R., & Randall, P.J. (1996) *Management of riparian areas in the Sierra Nevada*. Sierra Nevada Ecosystem Project, Centers for Water and Wildland Resources, University of California.
- Moss, B. (2008) Water pollution by agriculture. *Philosophical Transactions of the Royal* Society, 363, 659-66.
- Petts, G.E. (1990) The role of ecotones in aquatic landscape management. In Naiman, R.J., De 'camps, H. (Eds), *The ecology and management of aquatic-terrestrial ecotones, man and the biosphere series 4, Unesco, Paris.* Carnforth, UK:The Parthenon Publishing Group.
- Pielou, E.C. (1966) The measurement of diversity in different types of biological collection. Journal of Theoretical Biology, 13, 131-44.
- Poiani, K.A., Richter, B.D., & Anderson, M.G. (2000) Biodiversity conservation at multiple scales: functional sites, landscapes, networks. Bioscience 50, 133-48.
- Shannon, C.E., & Weaver, W. (1963) *The measurement theory of communication*. Urbana: University of Illinois Press.
- Simpson, E.H. (1949) Measurement of diversity. Nature, 163, 688.
- Verry, E.S., Dolloff, C.A., & Manning, M.E. (2004) Riparian ecotone: a functional definition and delineation for resource assessment. *Water, Air, and Soil Pollution: Focus, 4*, 67-94.
- Westfall, R.H. (1992) *Objectivity in stratification, sampling and classification of vegetation.* Ph.D. thesis. University of Pretoria, Pretoria.