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ABSTRACT 

 

The article indicates using vectors the solution of some algebraic problems on the topics of 

equation and inequality. In each sketch, geometric techniques for solving problems are given. 

As a rule, they do not have a sign of familiarity for students, but, as experience shows, they are 

easily perceived by them. Thanks to the integration of the “non-geometric” conditions of the 

problem and its geometric solution, mathematical knowledge appears to students as a living, 

dynamic system that can solve problems from other sciences and practice. 
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MATERIALS AND METHODS 

 

In this article we will show using vectors not only to solve geometric problems, but it is also 

possible to solve algebraic problems. Solve problems in this methods useful for preparing 

students for olympiads in mathematics. Now we solve some algebraic tasks using vector. 

1-task. Solve the equation ( )( )244512 2 ++=+− xxxx        

Decision. We consider two nonzero vectors ( )21;aaa  and ( )21;bba . We use from the scalar 

product of vectors and the Cauchy-Bunyakovsky inequality: 
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12121 bababbaa +++ . Put ( )xa ;2   and  ( )5;1−xb . Then the Cauchy-

Bunyakovsky inequality takes the form  ( )( )244512 2 +++− xxxx . 

By condition, inequalityturns into equality. In this task, this is possible only if  

5
5

2

1
==

−
x

x

x
       [4] 

2-task. The positive numbers a, b, c are such that abc=1. Prove the inequality 
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Decision. Convenient to move to new variables x=1/a, y=1/b, z=1/c, also a positive and related 

condition  xyz=1. This inequality is equivalent to the following:  
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Applying the Cauchy - Bunyakovsky inequality to vectors  
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2

, those. ( ) 2/zyxS ++ . Using 
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the inequality between the arithmetic mean and geometric mean of three positive numbers, we 

obtain:   
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3-task. The numbers x, y, z are such that  x+y+z=1. Prove the inequality 

5141414 +++++ zyx ,  here  x,y,z
4

1
− .        

Decision. We consider two vectors ( )14;14;14 +++ zyxm   and  ( )1;1;1n . 

Obviously, the following inequality holds: nmnm   or in coordinate form  
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1332211 yyyxxxyxyxyx ++++++ . It is this last inequality that is the 

key to the solution. To mean 
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4-task. Solve the equation 11642 2 +−=−+− xxxx . 

Decision. Let's evaluate the left and right sides of the equation:    

( ) 223116
22 +−=+− xxx ,  

21142141242 22 =+−+−−+−=−+− xxxxxx . Here the vectors are 

selected as follows:  ( )xxm −− 4;2   and  ( )1;1n . Now it’s clear that the original equation is 

equivalent to the system  
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xx . We solve this system and find the root. Answer:  

x = 3.       [4] 

 

5-task. The numbers x, y, z are such that  x2+3y2+z2=2. Find the largest and smallest expression 

value  2x+y-z. 

Decision. It is clear that to evaluate the expression   2x+y-z    the coordinates of the vectors 

must be chosen so that the modulus of one of them is equal to 23 222 =++ zyx . Consider 

the vectors  ( )zyxm ;3;  and 
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Consequently, 
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6-task. Among all system solutions  
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Select those for which the value  x+z  takes the largest value. 

Decision. Consider the vectors a =(x,y) and b =(t,z). By condition |a|=2, |b|=3, (a,b)=6= |a||b|.  

Therefore, the vectors a and b are directed identically, i.e. a =2(u, v), b =3(u, v).  
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Put u =cosφ,  v =sinφ,  тогда ( ) .13sin13sin3cos2 +=+=+ zx     [3] 

 

7-task. Prove that if   a2+b2+c2=1,  m2+n2=3, then, 2++ cnbma . 

Decision. We introduce vectors in space  ( )cbau ;;   and  ( )1;;nmv .  We apply the Cauchy-

Bunyakovsky vector inequality 

2122222 =++++=++= nmcbavucbnamvu        [2] 

 

8-task. Find the largest value of the function:  xxy −++= 2228 . 

Decision. The scope of the function is the segment  [-28; 22].  Introduce vectors 

( )xxu −+ 22;28  and  ( )1;1v .  We get:  

.102501122282228 ==+−++=−++= xxvuxxvu  

Apparently, the greatest value of the function y is 10. It is achieved when the inequality 

turns into equality, i.e. when the coordinates of the vectors and are proportional: 

-3  xx  -2228  x 2228 ==+−=+ xx . 

It is significant that the value x = -3 is included in the domain of the function.  

Answer: 10 at x = -3.       [1] 

 

CONCLUSION 

 

The geometric solution of non-geometric tasks creates the following skills for students: a deep 

understanding of interdisciplinary communication, the formation of scientific thinking, 

worldview and creativity. 

 

An important component of human culture is a wide range of ways of its activity. Therefore, it 

is very important for schoolchildren to establish strong intra-subject relationships in the school 

course of mathematics. A significant expansion of the methods of their mathematical activity 

can help visual solutions to problems, because to know mathematics means to be able to solve 

problems. 

 

Today, in the framework of the current curriculum in mathematics, due to lack of time, it is 

very difficult for the teacher to carry out the stages of the final repetition. However, the 

selection of problems for integrated mathematics lessons can partially eliminate this difficulty. 

 

THE TASK FOR INDEPENDENT WORK 

 

№1.  Prove the inequality: 638321 −++++ aaa  

№2.  Prove that if  a+b+c=6, then 9141414 +++++ cba ,  here a,b,c
4

1
− .   

№3. Prove the inequality: 201634 −+ aa  at any  16;0a . When is equality achieved? 

№4.  Prove that if  a-b+c=6, then 6321 ++−++ cba . 

№5. Prove that if .8ba  then   ,3222 ++ ba  

№6. Solve the equation: 
21231 xxxx +=−++  

№7. Find the greatest value of the functions: 
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 a) xxy −+−= 168             b) 1cos1sin 22 +++= xxy  
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