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ABSTRACT 

Based on the standard form of generalized Schmidt decomposition of three qubit 

pure states, we discuss the super-additive relation, sub-additive relation, monogamy 

relation and other trade-off relations of quantum coherence measure. We first present 

correct proofs of super-additive relation and strong super-additive relation of 
1l  

norm 

coherence, then prove two sub-additive relations of 
1l  

norm coherence. We also 

present the conditions of the monogamy relations about 
1l  

norm coherence and the 

square of 
2l  

norm coherence separately, and finally establish their corresponding trade-

off relations respectively.  

Keywords: Generalized Schmidt decomposition; 
1l  

norm coherence;  
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norm 

coherence; super-additive relation; sub-additive relation; monogamy relation. 

I.  Introduction 

Generalized Schmidt decomposition aroused since there is no Schmidt decomposition 

for a general pure state of n  partite quantum system. Aiming to reduce the number and 

the phase factor of coefficients that affect the state, A. Acin [1]  proposed the concept 

of generalized Schmidt decomposition. He found that any three qubit pure state can be 

represented by one of the following three bases: 

     .111,101,110,100,000;111,100,110,001,000;111,100,010,001,000

Later, Carteret et al. [2] extended the above conclusion to multipartite quantum states.
 

F. Liu et al. [3-4] first applied generalized Schmidt decomposition into quantum 
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coherence theory. The quantum coherence comes from the principle of quantum 

superposition, which is the most basic property of quantum mechanics and the 

advantage of quantum information. Recent years, many coherence measures are 

proposed, such as
 1l  

norm coherence [5],
 2l  

norm coherence [6], relative entropy 

coherence [5], geometric coherence [7], skew information coherence [8] and so on. 

According to the standard form of generalized Schmidt decomposition, this paper 

will discuss the super-additive relations, strong super-additive relations, sub-additive 

relations, monogamy relations and other trade-off relations for any qutrit pure state 

under 
1l  

norm coherence and the square of 
2l  

norm coherence. 

II.  Super-additive relation and strong super-additive relation 

In this section, we discuss the applications of the generalized Schmidt 

decomposition of pure state in the super-additive relation and strong super-additive 

relation.  

We first recall that the generalized Schmidt decomposition of pure state 
ABC

 in 

222   quantum system is [1] 

111110101100000 43210 rrrerr i

ABC
++++= 

,
       （1.1） 

where 0ir ， 1
4

0

2 = ir . 

 Let 
ABCABC = , then we show the representation of ABC  and its partial 

operators as follows: 
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therefore, we present the following matrix forms of all the above density operators 
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F. Liu et al. [3] discussed the inequality of super-additive relation and strong 

super-additive relation of
 
three qubit pure state under 

1l  
norm coherence 

1l
C . They 

gave the following two theorems of super-additive relation and strong super-additive 

relations respectively, but their proofs are not correct, so we first present the 

corresponding correct proofs. 

Theorem 1[3] For any three-qubit pure state
 ABC


 
in (1.1), there is the following 

super-additive relation under ,
1l

C
 

( ) ( ) ( ) ( ).
1111 ClBlAlABCl ρCρCρCρC ++  

Proof.  Recall that the definition of the 
1l  norm of coherence[6] is as follows, 

( ) .
1 
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ijlC                       （1.3） 

Then according to the corresponding density matrices in (1.2) , we get that 
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then we have 
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then 

( ) ( ) ( ) ( ) 0,
1111

ClBlAlABCl ρ-Cρ-Cρ-CρC  

so 

          
( ) ( ) ( ) ( ).

1111 ClBlAlABCl ρCρCρCρC ++
               

 

Theorem 2[3] For any three-qubit pure state
 ABC


 
in (1.1)

, 
there is the following 

strong super-additive relation under 
1l

C
 ,

 

( ) ( ) ( ) ( ) ( ) ( ) ( )BClAClABlClBlAlABCl ρCρCρCρCρCρCρC
1111111

+++++
 

 if ( ) ( )324320140 2 rrrrrrrrr ++++
. 

Proof. According to the formulas in (1.4), we get that 
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since ，0ir ( ) ( )324320140 2 rrrrrrrrr ++++  and two formulas in (1.5)
 
, we have 
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so  

( ) ( ) ( ) ( ) ( ) ( ) ( ),
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and ( )ABCl ρC
1

 is strong super-additive.
                                                      

 

III.   Sub-additive relation 

 In this section we mainly verify the application of the generalized Schmidt 

decomposition of pure state in the sub-additive relations.  

P. Y. Li et al. [4] have discussed one sub-additive relation as follows, 
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Lemma 1[4] For any three-qubit pure state
 ABC


 
in (1.1), there is the following

 
sub-

additive relation under 
1l

C
,
 

( ) ( ) ( ) ( )BlAlAClABl ρCρCρCρC
1111

++ . 

     We then discuss other sub-additive relations. 

Theorem 3
 
For any three-qubit pure state
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in (1.1), there are the following two 

sub-additive relations under 
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C
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Proof.  （i）According to the formulas in (1.4), we get that 
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Ⅳ.  Monogamy relations 

Using the generalized Schmidt decomposition of pure state, we discuss the 

monogamy relation under two coherence measures:  
1l  norm coherence, 

1l
C  and the 

square of 
2l norm coherence, 

2

2l
C .  

Theorem 4 
 
For any three-qubit pure state

 ABC


 
in (1.1), there is the following 

monogamy relation under 
1l

C
,
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14 rr  . 

Proof  According to the formulas in (1.4), we get that 
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( ) ( ) ( ).
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Theorem 5 For any three-qubit pure state
 ABC


 
in (1.1), there is the following 

monogamy relation under 
2

2l
C , 

( ) ( ) ( ) ,
222
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2

1

2

4 rr 
. 

Proof.  Recall that the 
2l  norm of coherence[6] is defined as 
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( ) ,
2

2 


=
ji

ijlC                       （1.6） 

then according to the formulas in (1.2), we can easily get that 
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then we have 
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Ⅴ.  Other trade-off relations 

 Z. M. Jiang et al. [9] studied other trade-off relations beyond monogamy relations. 

We now use the form of generalized Schmidt decomposition to verify those coherence 

inequalities from different viewpoint. 

Theorem 6 For any three-qubit pure state
 ABC


 
in (1.1), there is the following 

trade-off relation under 
1l

C
,
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Theorem 7 For any three-qubit pure state
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So 
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