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ABSTRACT 

 

In the article a method of solving tasks for multiplayer pursuit-evasion games is given. This 

task belongs to case when pursuers are not encircled the evader. It is shown that in this case 

the evader can to escape, especially if he will run to the open side. 
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INTRODUCTION, LITERATURE REVIEW AND DISCUSSION 

 

In the context of radical reforms in education, the form and content of education have changed. 

It is also time-consuming to develop methods for developing creative competence in the 

teaching process. A distinctive feature of students' creative competence is that they develop 

like other competencies. Therefore, the main task of the teacher in solving this problem is to 

find the forms, methods and means of organizing students' creative activity in the process of 

teaching mathematics. 

 

As you know, the solution of the problem is to apply the theoretical knowledge gained in 

practice. This is important for developing students' mathematical thinking, including analyzing 

events, summarizing information about them, identifying similarities and differences. Through 

problem solving, students broaden their knowledge, gain a deeper knowledge of laws and 

formulas, consider the limits of their application, and gain the skills to apply common laws to 

specific situations. Problem solving forms mental activities, specific approaches to 

mathematical phenomena. Students will learn to take a broad range of processes to address a 

particular topic. 

 

New situations that are not known for solving problems are the process of acquiring new 

knowledge by identifying problematic issues. Managing learning in the learning process is 

primarily about managing the process of discovering innovation through problem-solving. The 

discovery process can be conditionally divided into two stages. In the first step, a student solves 

the problem with the help of a teacher, books, or other means. During the second phase of the 

analysis of the problem, the student will have an urgent need to invent something new and 

solve new problems. This is, of course, a very unique and highly complex psychological 

process in man. The success of the teacher is also what motivates the student. 

 

A great deal of psychological and pedagogical research has been devoted to the study of these 

cases, for example the works of N.A.Mencinsky, D.N.Bogoyavlensky, V.I.Zikova, 

E.N.Kobanova-Meller, Z.I.Kalmikova. 

 

It is worth noting that problem-solving in problem situations does not come with the solution 

process. Correcting the problem is the psychological state of the student following the problem-

solving process. It is a set of questions that arise at the beginning of a student's problem-solving 



European Journal of Research and Reflection in Educational Sciences  Vol. 8 No. 2, 2020 Part II 
  ISSN 2056-5852 
 

Progressive Academic Publishing, UK   Page 217  www.idpublications.org 

process, and in the process of finding answers to these questions, he or she has discovered some 

unknown connections between them. As the student solves this new issue, new questions arise, 

and so on. This condition can be called the main nerve fiber of thinking. 

 

As for the problem-solving process, it is the process of acquiring new knowledge. Only the 

student works on it. The motivating factor for the student is the desire to discover the 

awakening in it. 

The following key points can be highlighted when addressing potential problems. 

1. Complete a new problem. Apply the method that the student learned to solve the 

initial problem; 

2. Solve the problem of applying a particular method to a new problem because of an 

incomplete situation. If it is not possible to solve the problem in a certain way, then change it 

and devise a new method; 

3. Apply the solution to the problem and solve it; 

4. Verify the correctness of the solution. 

Each of the four stages in the creative process, in turn, contains a number of stages. Thus, the 

solution of the problem ends with the discovery of a new solution, starting with the problem 

that arises in the solution of a particular problem. As we have seen, this process is at the core 

of the student's creative competence. 

 

Below we present a method for solving games involving a large number of enthusiasts in 

developing students' creative competence. 

Three points x1, x2, x3, y are in the plane. If for any of i = 1,2,3, at any given moment, xi = x 

becomes equal, the game is over. The equations of motion of these points are as follows: 

1 1 2 2 3 3, , ;x u x u x u y v= = = =  

Here 1 2 3, , ,u u u v  

tionmultiplicascalar ),(,),((,1,1,1 321 −= zzzzzkvuuu  control parameters 

that satisfy the condition.Generally, measurable functions, which are defined as 

1 1 2 2 3 3(t), (t), (t), (t)u u u u u u v= = = =  and k≥1 is a real number.If the hotspots try to finish the 

game as quickly as possible with their control options, the escape point will extend the game 

by using its own control parameter. If we substitute , 1,2,3i iz y x i= − = , the equation for the 

displacement and escape points will look as follows. 

,,1,1,1,,, 321332211 kvuuuvuzvuzvuz +−=+−=+−=
•••

 

𝑧𝑖 = 0 the game is over, after switching. 

1-Problem: In the game described above, k = 1, for the initial 
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surround the fugitive. In the final condition 
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prove that. 

We take the argument in the opposite way. In fact, let 0(z ) 0 = , other wise 0(z ) 0  , since 

1 2 3, ,    are less than zero therefore, the sum of c must not be less than zero. Thus, let 

0(z ) 0 = . Then there is 0(z ) 0 =  where 
0 0 0 0 0 0

1 1 2 2 3 3(z ,v ) (z ,v ) (z ,v ) 0  + + =  Hence,

0 0 0 0 0 0

1 1 2 2 3 3(z ,v ) 0, (z ,v ) 0, (z ,v ) 0  = = = . appears. Now let us assume that 
0 0

1 1(z ,v ) 0 = , is 

0 0

1 1(z ,v ) 0 = . Otherwise

0,1,,),(
0

1

0

10

0

1

0

1
2

0

2

0

0

1

0

10

0

1

0

100

11 













+














−+














+














=

z

z
v

z

z
vv

z

z
v

z

z
vz  

inequality.Hence,
0v 1= . According to this definition, 
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From these inequalities, the part orthogonal to the points 
0

3

0

2

0

1 ,, zzz  is located on one side of a 

straight line, from which  0 0 0

1 2 30 Jntco z ,z ,z , which is contrary to the terms of the issue. Thus, 

we prove that 0)( 0 z . 

Now against the optional v = v (t) control of the escape point, let the runners set the following 
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It can be easily shown that if (t) 1v   is a function of (t)v , 1 2 3(t), (t), (t)u u u . They also meet 

the conditions 1 2 3(t) 1, (t) 1, (t) 1u u u   . In the proposed controls, the game is 
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from the initial position 
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We must have a system of differential equations with the initial condition, solve them, 
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Therefore, at t T= , at least one of 1 2 3(t), (t), (t)z z z  is zero. This means that the game is over. 

[1] The case we have just discussed is a case in 𝛼 = 3. This is because the pursuers and 

the fugitives have the same capabilities, and the pursuers surround the fugitive. In this case the 

pursuers should certainly catch the fugitive, as is proved by this. 

If the pursuers are the same, even if the pursuers do not encircle the fugitive, the escapee 

must be able to escape and flee to the most comfortable open space. From theorem 3 [1], m = 

3 indicates how the chase should be avoided when the chase surrounds the escapee. This way 

you will have the opportunity to learn [1] while solving problems. 

Although the problem points in [3] are written in simple differential equations, the 

number of runners varies widely. They run away as they please. We have one escapee in the 

matter we have learned. 

[3] - In particular, the two-pointer coordinate axes in the first quarter on the plane, and 

the other two prove that the pursuers catch the fugitive in a game with two choppers and one 

runner in the same square. Note that if the game is moving across the plane rather than square, 

the runner will run away. If there is only one pursuit and one runner within that square, then 

the runner has the control that he or she will be able to walk for a limited time without leaving 

the square. This is a remarkable result now. A student who studies this case may find new 

options in it. 

 

Thus, it is important to identify talented students and to develop their creative work on the topic 

chosen from differential equations. At the same time, solving and analyzing these types of 

issues allows students to develop their creative thinking and develop their creative competence. 
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