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ABSTRACT 

We notice spectral invariance exists between non-commuting, non-Hermitian (PT- 

symmetry) Hamiltonian and corresponding real non-Hermitian (T-symmetry)operators. 

As an example we consider an analytically solvable model using the unified algebraic 

meth of (H.B. Zhang, G.Y. Jiang and G.C. Wang J. Math. Phys 56,072103 (2015)) and 

numerical models. Interestingly the T-symmetry operators are generated using x ⇌ p. 

1. INTRODUCTION 

Since the developments of Quantum Mechanics [1], spectral analysis plays a major 

role in understanding beauty behind quantum formulations. One of the fundamental 

quantum postulates is that” commuting operators reflect wave function invariance” 

mathematically 

[H1, H2] = 0         (1) 

Here H1 → E1; H2 → E2 and E1  E2. However till now no such literature which 

deals with spectral invariance with 

[H1, H2]  0         (2) 

having different nature of wave functions. However in this paper we would like to report 

that above relation can yield spectral invariance nature, when recasted as 

           [H1, (x, p), H2 = H1 (x ⇌ p)]  0      (3) 

In order to address the above relation we discuss real spectra in complex systems 

[2]. As such it is an abstract mathematics. However subsequent mathematical findings 

using Quantum Mechanics are verified experimentally both in real analysis [1] and so also 

in complex analysis [2]. In fact complex nature of quantum mechanics are basically due to 

space-time (PT) invariant nature of Hamiltonians satisfying the condition [3] 

PTH (PT)–1 = H        (4) 
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Here the complex operator H is not necessarily be hermitian i.e. 

         (5) 

In above P stands for parity operator or space reflection operator having the behaviour 

PpP–1 = –p         (6) 

PxP–1 = –x         (7) 

Similarly T stands for time - reversal operator 

TxT–1 = –x         (8) 

TpT–1 = –p         (9) 

where x (co-ordinate ) and p(momentum) satisfies the commutation relation 

[x, p] = I         (10) 

Similarly T-symmetry operator means 

THT–1 = H         (11) 

Mathematically T-symmetry operator can be written as 

[H, T] = 0         (12) 

In this paper we present few model operators on PT-symmetry in nature and 

generate corresponding T symmetry operator and study the spectral nature as follows. 

II. ORIGIN OF T-SYMMETRY OPERATOR 

The interesting part of the above symmetry is that on replacing 

x → p; p → x         (13) 

the magnitude of commutation relation does not change i.e 

[p, x] = −i → |[p, x]| = 1       (14) 

This property has been highlighted in the case of Hermitian operators [4]. However 

in the case of complex operator 

ix → ip         (15) 

†H H
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the left hand side is PT symmetry and complex in nature, however the right hand side 

becomes real. Physically a complex PT-symmetry operator is equivalent to real non-

hermitian operator. 

III. ANALYTICALLY SOLVABLE MODEL 

Let us consider the model operator discussed earlier by Bender and Boettecher [2] as 

H1 = p2 + x2 + ix        (16) 

having energy eigenvalues 

 n

5
E 2n

4
= +          (17) 

On using x ⇌ , the above operator can be written as 

h1 = p2 + x2 + ip        (18) 

In order to find the energy eigenvalues, we use the general relation as follows. For 

general quadratic operator [5] 

HRef = h11p
2 + h22x

2 + ih12(xp + px) + ih1p + h2x    (19) 

having energy eigenvalue 

 ( ) ( )
( )

2 2
2 1 22 2 11 1 2 12

n 11 22 12 2

11 22 12

h h h h 2h h h
2n 1 h h h

4 h h h

− −
 = + + +

+
  (20) 

Following the above we have 

h11 = H22 = 1; h12 = 0; h1 = 2, h2 = 0      (21) 

Under the aboce constraints 

 
5

2n
4

= +          (22) 

It is easy to see that 

 n

5
2n E

4
= + =         (23) 

Hence we conclude that under the change x ⇌ p the spectra remains invariant. 
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IV. NON-ANALYTICAL MODELS 

In this case we consider few non-analytical model PT symmetry operators and 

corresponding T symmetry operators. In all the cases we use matrix diagonalization method 

to present spectral nature [4, 6] In the present, we solve the eigenvalue relation 

H| > = E| >         (24) 

where 

 m

m

| A | m =          (25) 

and |m > is the harmonic oscillator wave function, satisfying the relation 

< m|H0|m > = < m[p2 + x2]|m > = (2m + 1)     (26) 

A-1 : Broken spectra 

The Hamiltonian considered are the following 

H2 = p2 + |x| + ix        (27) 

h2 = x2 + |p| + ip        (28) 

A-2 : Unbroken spectra 

The Hamiltonian considered are the following 

H3 = p2 + x4 + ix        (29) 

h3 = x2 + p4 + ip        (30) 

A-3: Broken spectra 

The Hamiltonian considered are the following 

H4 = p2 + x4 + i10x        (31) 

h4 = x2 + p4 + i10p        (32) 

A-5: Broken spectra 

The Hamiltonian considered are the following 

H5 = p2 + ix |x|         (33) 

h5 = x2 + ip |p|         (34) 

Few eigenvalues are tabulated in Table-1 
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V. CONCLUSION 

In this paper a reader will notice that all PT-symmetry operator is associated with 

T-symmetry operator reflecting iso-spectral nature. Similarly our previous study on 

Hermitian operator also reflects the same thing [5] i.e. every Hermitian operator is 

associated with another Hermitian operator having the same spectra. In conclusion non-

commuting operators generated using x ⇌ p will always yield same spectral nature (see 

figs 1-4). As stated above the above Hamiltonians correspond to different nature of wave 

functions with a view to justify this nature, we consider the unbroken spectra and display 

the wave function mod square in fig-5 and 6.  
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Table-1: PT-symmetry and T-symmetry operator 

n H1 h1 See Fig 

0 1.25 1.25  

1 3.25 3.25 

2 5.25 5.25 

3 7.27 7.25 

4 9.25 9.25 

n H2 h2 See Fig 

0 1.488158 1.488158 Fig-1 

1 3.852053 + 0.868850 i 3.852053 + 0.868850 i 

2 3.852053 – 0.868850 i 3.852053 – 0.868850 i 

3 5.637605 + 1.914109 i 5.637605 + 1.914109 i 

4 5.637605 – 1.914109 i 5.637605 – 1.914109 i 

n H3 h3 See Fig 

0 1.194489 1.194489 Fig-2 

1 3.813357 3.813357 

2 7.476329 7.476329 

3 11.661074 11.661074 

4 16.275800 16.275800 

n H4 h4 See Fig 

0 7.919338 – 7.067323 i 7.919338 – 7.067323 i Fig-3 

1 7.919338 + 7.067323 i 7.919338 + 7.067323 i 

2 13.386047 – 3.187097 i 13.386047 – 3.181097 i 

3 13.386047 + 3.181097 i 13.386047 + 3.181097 i 

4 17.957084 17.957084 

n H5 h5 See Fig 

0 1.285090 1.258090 Fig-4 

1 4.991283 – 0.780527 i 4.991283 – 0.780527 i 

2 4.991283 + 0.780527 i 4.991283 + 0.780527 i 

3 8.618015 + 3.363276 i 8.618015 + 3.363276 i 

4 13.386047 + 3.181097 i 13.386047 – 3.181097 i 

5 17.957084 17.957084 
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Real, H2 = p2 +|x| + ix and h2= x2 + |p| + ip 

Figure 1 : Energy eigenvalues 
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Real, H3 = p2 + x4 + ix and h3= x2 + p4 + ip 

Figure 2 : Energy eigenvalues 

 

Real, H4 = p2 + x4 +10 ix and h4= x2 + p4 + 10 ip 

Figure 3 : Energy eigenvalues 

 

Real, H5 = p2 + |x| ix and h5= x2 + |p| ip 

Figure 4 : Energy eigenvalues 
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Figure 5 : Wave function mod square 
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Figure 6 : Wave function mod square 


