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Abstract: The Schatten-2 norm of coherence is studied in this paper. Firstly, the 

Schatten-2 norms of coherence for some states are calculated, and their analytical 

formula are showed to be equal to the 2l  norm of coherence for these states. Then the 

Schatten-2 norms of coherence for maximally coherent states is discussed. Finally, the 

Schatten-2 norm of coherence is proved to be an illegitimate coherence measure using 

YZX framework, which is simpler than the precious method in [Phys. Rev. A. 93: 

012110 (2016)]. 
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1  Introduction 

Quantum coherence is an important subject in quantum theory and quantum 

information science. Baumgratz et al. [1] first proposed a framework (BCP framework) 

for quantifying quantum coherence. A function C defined on a space of quantum states 

can be used as a measure of coherence if the following four conditions are satisfied [1], 

(B1) ( ) 0C    , and ( ) 0C  =   if and only if  I  , where I   is the set of 

incoherent states that are diagonal in a fixed basis  i ; 

(B2) ( )( ) ( )C C    for any incoherent operation  , i.e.,   is completely 

positive trace preserving (CPTP) map, ( ) †

n n

n

K IK I =    for all n, I is the set of 

incoherent states; 

(B3) ( ) ( )n n

n

p C C  , where ( )†

n n np Tr K K= , † /n n n nK K p =  ,  nK  is a set 

of incoherent Kraus operators; 

(B4) C is a convex function, i.e., ( )i i i i

i i

C p p C 
 

 
 
   for any set of quantum 

states  i  and any probability distribution  ip . 

Many legitimate coherence measures satisfying the BCP framework were 

proposed in recent literature, such as 
1l
  -norm coherence [1], relative entropy of 
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coherence [1], modified trace norm of coherence [2], geometric measure of coherence 

[3], robustness coherence [4], skew information of coherence [5] etc. There are also 

other illegitimate coherence measures violating (B3) of BCP framework, such as the 2l  

norm of coherence [1] and the Schatten-p norm of coherence [6].  

The 2l   norm of coherence, ( )
2l

C   ,  is defined as ( )
2 2

minl lI
C


  


= −  , where 

the 2l  norm of a matrix ( )ijX x=  is 
2

1/2

2

ijl
ij

X x
 

==  
 
  . And the Schatten-p norm 

of coherence is defined as ( ) minp pI
C


  


= − . 

In the sequel we focus on the following Schatten-2 norm of coherence, 

( )2 2
min

I
C


  


= − , 

here the Schatten-2 norm of a matrix ( )ijX x=  is defined as follows [6], 

( )
1/2

1/2
2 2

2

r

i

i

X Tr X 
 

= =  
 
 , 

where r is the rank of X and i   denotes non-zero singular values of X, i.e., 

eigenvalues of †X X X= . 

Recently, Yu et al. [2] put forward a YZX framework to quantify quantum 

coherence. A nonnegative function C defined on a space of quantum states can be used 

as a measure of coherence if the following three conditions is satisfied [2], 

(C1) ( ) 0C   , and ( ) 0C  =  if and only if  Î I ; 

(C2) ( )( ) ( )C C    for any incoherent operation  ; 

(C3) ( ) ( ) ( )1 1 2 2 1 1 2 2C p p p C p C    = +   for block diagonal states    in the 

incoherent basis. 

It has been shown that the YZX framework is equivalent to the BCP framework 

[2].  

In this paper, we focus on the properties of Schatten-2 norm of coherence. We first 

calculate the Schatten-2 norms of coherence for some states, then we prove that these 

Schatten-2 norms of coherence are equal to their corresponding 2l  norms of coherence. 

Moreover, we calculate the Schatten-2 norms of coherence for maximally coherent 

states. Finally, we use YZX framework to prove that the Schatten-2 norm of coherence 

is not a legitimate coherence measure. 

2  The Schatten-2 Norms of Coherence of Some States 

    We begin with the calculation of the Schatten-2 norms of coherence for the 

following three kinds of quantum states:  

    qubit states: * 1

a b

b a


 
=  

− 
,  
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three qutrit states: 

11 13

22

*

13 33

0

0 0

0

X

a a

a

a a



 
 

=  
 
 

, 

11 12

*

12 22

33

0

0

0 0

Y

a a

a a

a



 
 

=  
 
 

, 

11

22 23

*

23 33

0 0

0

0

Z

a

a a

a a



 
 

=  
 
 

, 

 a class of qudit states,   p* =  

we also look for their optimal incoherent states under Schatten-2 norms of coherence. 

Proposition 1. For the above three kinds of quantum states, their Schatten-2 norms 

of coherence are equal to their 2l  norms of coherence, i.e., 

( ) ( )2 2lC C =  

and their optimal incoherent states under Schatten-2 norm of coherence are their 

diagonal states. 

Proof. Recall that we have calculated the 2l  norms of coherence of all the above 

three kinds of qubit states, so we only need to calculate their Schatten-2 norms of 

coherence, and make some comparison.  

Firstly, we consider the qubit states * 1

a b

b a


 
=  

− 
. Denote the qubit incoherent 

state as  ,1diag x x = −  I , then 

*

a x b

b x a
 

− 
− =  

− 
 

and 

( ) ( )
( )

( )

( ) ( )

( ) ( )

2 2 **

†

* 2 2* ** * *

a x b a x b x a ba x b a x b

b x ab x a a x b x a b x a b
   

   − + − + −− − 
  − − = =    −− − + − − +    

, 

so 

( ) ( ) ( )
1/2

2 2 2† 1/2

2
( ) 2Tr a x x a b     − = − − = − + − + . 

It is easy to see that 
2

2 b −  , and the equality holds when x a= , so 

( ) ( )
22 2

min 2l
I

C C b


   


= − = = , 
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and the minimum attains at  ,1 diagdiag a a = − = , i.e. the optimal incoherent state of 

  is diag . 

Secondly, we consider the three qutrit states

11 13

22

*

13 33

0

0 0

0

X

a a

a

a a



 
 

=  
 
 

 , 

11 12

*

12 22

33

0

0

0 0

Y

a a

a a

a



 
 

=  
 
 

 , 

11

22 23

*

23 33

0 0

0

0

Z

a

a a

a a



 
 

=  
 
 

 . Denote the qutrit incoherent state as 

0 0

0 0

0 0

x

y

z



 
 

=  
 
 

, then 

11 13

22

*

13 33

0

0 0

0

X

a x a

a y

a a z

 

− 
 

− = − 
 − 

, 

and 

( ) ( )

( ) ( )

( ) ( )

22 *

11 13 11 13 33 13

2†

22

* 2 2* *

11 13 33 13 33 13

0

0 0

0

X X

a x a a x a a z a

a y

a x a a z a a z a

   

 − + − + −
 
 − − = −
 
 − + − − +
 

, 

so 

( ) ( )( ) ( )
1/21/2

2 22 2†

11 22 33 132
2X X XTr a x a y a z a     − = − − = − + − + − + . 

Obviously, 132
2X a −   , and the equality holds if and only if 11x a=  , 

22y a= , 33z a= ,  

thus 

( ) ( )
22 132

min 2X l X
I

C C a


   


= − = =  

and the minimum attains at 

11

22

33

0 0

0 0

0 0

diag

a

a

a

 

 
 

= = 
 
 

. 

Similarly, one can prove the equalities of Y  and Z  as follows, 

( ) ( )
22 122Y l YC C a = = , ( ) ( )

22 232Z l ZC C a = = , 

and their optimal incoherent states are their diagonal states 
Y

diag , 
Z

diag , respectively.  
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Finally, we consider the class of qudit states p* = . Denote 

the qudit incoherent state as  , then 

 

and 

( ) ( )( ) ( )( )
1/2† 22 2 2* * *

1 1 2 22
1d dTr x y x y x y d d a      L− = − − = − + − + + − + − . 

Obviously, ( )*

2
1d d a −  −  , and the equality holds if and only if 

1 1 2 2, , , d dy x y x y x= = =L ,  

so 

( ) ( ) ( )
2

* *

2 2
min 1l

I
C C d d a


   


= − = = −  

and the minimum attains at 
*

diag
 = .       □ 

Proposition 2. For the d-dimensional maximally coherent state |d d  =   , 

where 
1

0

1
| , 1

d

d

n

n d
d


−

=

=   ,  we have 

2

( 1)
( )

d d
C

d


−
=  

and its optimal incoherent states is diag =  . 

Proof.  Denote the qudit incoherent state as 
1

| |
d

ii

k i

i i 
−

=

=  .  Let 

1

0

|, 0,1,2, , 1
d

n d

k

U k n k n d
−

=

=   =  − , 

then for 0,1,2, , 1n d=  − , we have 
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n dU  = d= . 

and 

1
†

0

d

n n

n

U U
−

=

= dI= . 

Since for all the same dimensional matrices A,B and unitary operators U, there are 

the following inequalities [7] 

2 2 2

†

22
;UAU A A B A B= +  +‖‖ ‖ ‖ ‖‖ ‖ ‖ , 

then we have 

d d dI  − 
2

1
|d d dI

d
 =  − . 

The above proof process is similar to the proof process of Proposition 3 in [8]. 

So 

2 2

( 1)1
( ) |mi |n d d d d d

I

d d
C I

d d
   


− = =

−
=   − , 

and the minimum attains at the optimal incoherent state 
1

diag dI
d

 = = . 

 

3 The Schatten-2 Norms of Coherence is not a legitimate measure of coherence 

Proposition 3. ( )2C  is not a legitimate measure of coherence. 

Proof.  We only need to prove that ( )2C   violates the condition (C3) of  YZX 

framework. 

Consider a special state, 

1 2

1 1

2 2
  =  , 

where 1

1
(| 0 |1 )( 0 | 1|)

2
 = +   +  and 2

1
( 3 | 4 | 5 )( 3 | 4 | 5 |)

3
 = + +   + + . 

It is easy to see that 

2 2 20

2
( ) min

2
C


    


= −  − =‖ ‖

I
, 

where 0

1 1
diag , ,0,0,0

2 2


 
=  

 
. 

On the other hand, from Proposition 2 we have 

( ) ( )2 21 2

2 6
;

2 3
C C = = , 
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then 

( ) ( )2 21 2

1 1 3 2 2 6

2 2 6
C C 

+
+ = . 

It means that 

( ) ( )22 22 21 1

1 1 1 1

2 2 2 2
C C C   

 
  + 

 
. 

Therefore, the Schatten-2 norm of coherence Schatten-2 violates the condition (C3) 

of YZX framework, namely, it is a illegitimate coherence measure. 

 

4  Conclusion 

We have calculated the Schatten-2 norms of coherence ( )2C  for some states, and 

got the analytical formula ( ) ( )
22 2lC C b = =   for qubit states * 1

a b

b a


 
=  

− 
 ; 

( ) ( )
22 132X l XC C a = =  , ( ) ( )

22 122Y l YC C a = =  , ( ) ( )
22 232Z l ZC C a = =   for 

three qutrit states 

11 13

22

*

13 33

0

0 0

0

X

a a

a

a a



 
 

=  
 
 

 , 

11 12

*

12 22

33

0

0

0 0

Y

a a

a a

a



 
 

=  
 
 

 , 

11

22 23

*

23 33

0 0

0

0

Z

a

a a

a a



 
 

=  
 
 

 ; 

( ) ( ) ( )
2

* *

2 1lC C d d a = = −  for a class of qudit states . 

We have also proved that their optimal incoherent states under Schatten-2 norm of 

coherence are all their diagonal states. Then we have calculated that 2

( 1)
( )

d d
C

d


−
=  

for maximally coherent states. Finally, we have proved that the Schatten-2 norm of 

coherence is not a legitimate coherence measure using YZX framework. 
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