C,P,T ANALYSIS ON 1-PARAMETER MODEL (2×2) MATRIX IN COMPLEX QUANTUM SYSTEMS

Biswanath Rath
Department of Physics, North Orissa University, Takatpur, Baripada -757003, Odisha, INDIA; E.mail: biswanathrath10@gmail.com.

We present an one -parameter model (2×2) matrix model PT-symmetric operator and study its matrix form of $\mathrm{C}, \mathrm{P}, \mathrm{T}$.

PACS no-11.30.Er

Key words: C, P, T, unbroken spectra

1. Introduction

Nearly two decades ago Bender and Boettecher [1] proposed a thought provoking idea on study of real spectra in complex quantum systems. According to Bender and Boettecher [1], quantum operators satisfying the commutation relation

$$
\begin{equation*}
[\mathrm{H}, \mathrm{PT}]=0 \Leftrightarrow \mathrm{~T}^{-1}\left(\mathrm{P}^{-1} \mathrm{HP}\right) \mathrm{T}=\mathrm{H} \tag{1}
\end{equation*}
$$

can yield real spectra. Here P stands for parity operator and T stands for time reversal operator. The proposed model was well explained by considering the operator

$$
\begin{equation*}
\mathrm{H}=\mathrm{p}^{2}+\mathrm{ix} \mathrm{x}^{3} \tag{2}
\end{equation*}
$$

where x is the coordinate and p is the corresponding momentum. The commutation relation between x and is

$$
\begin{equation*}
[\mathrm{x}, \mathrm{p}]=\mathrm{i} \tag{3}
\end{equation*}
$$

Further we have

$$
\begin{align*}
& \mathrm{P}^{-1} \mathrm{xP}=-\mathrm{x} \tag{4}\\
& \mathrm{~T}^{-1} \mathrm{xT}=\mathrm{x} \tag{5}\\
& \mathrm{P}^{-1} \mathrm{pP}=-\mathrm{p} \tag{6}\\
& \mathrm{~T}^{-1} \mathrm{p} T=-\mathrm{p} \tag{7}
\end{align*}
$$

In order to give some more understanding on complex quantum systems, Bender Brody and Jones [2] have proposed a (2×2) matrix model analysis and foundout the
symmetry operator in matrix form. In fact after this model, Ahmed [3] also presented a matrix model on PT symmetry systems. Unfortunately in a recent analysis Rath [4] reported that C -symmetry and P -parity form of matrix in Ahmed paper were incorrect. However aim of this paper is to analyse matrix form of $\mathrm{C}, \mathrm{P}, \mathrm{T}$ considering an one-parameter model matrix.

2. Model 1-parameter matrix in complex space

Here we consider a model matrix

$$
H=\left[\begin{array}{cc}
\sin \theta+1 & i \sin \theta \tag{8}\\
i \sin \theta & \sin \theta-1
\end{array}\right]
$$

The spectra of this model is always real and are the following

$$
\begin{equation*}
\mathrm{E}_{ \pm}=\sin \theta \pm \cos \theta \tag{9}
\end{equation*}
$$

The corresponding wave functions are the following

$$
\left\lvert\, \psi_{+}>=\frac{1}{\sqrt{\cos \theta}}\left[\begin{array}{c}
\cos (\theta / 2) \tag{10}\\
\mathrm{i} \sin (\theta / 2)
\end{array}\right]\right.
$$

and

$$
\left\lvert\, \psi_{-}>=\frac{1}{\sqrt{\cos \theta}}\left[\begin{array}{c}
-\mathrm{i} \sin (\theta / 2) \tag{11}\\
\cos (\theta / 2)
\end{array}\right]\right.
$$

Further one can verify that in complex space the wave functions satisfy the relations

$$
\begin{equation*}
<\psi_{ \pm} \mid \psi_{ \pm}>=1 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
<\psi_{ \pm} \mid \psi_{\mp}>=0 \tag{13}
\end{equation*}
$$

One will also notice that using above eigenfunctions one can verify the eigenvalue relation as

$$
\begin{equation*}
\mathrm{H}\left|\psi_{ \pm}>=\mathrm{E}_{ \pm}\right| \psi_{ \pm}> \tag{14}
\end{equation*}
$$

3. $\mathbf{C}, \mathbf{P}, \mathbf{T}$ in matrix form

Following the work Bender, Brody and Jones [2], we find

$$
C=\left[\begin{array}{cc}
\sec \theta & i \tan \theta \tag{15}\\
i \tan \theta & -\sec \theta
\end{array}\right]
$$

Now following Wang, Chia and Zhang [5] model analysis,

$$
\begin{equation*}
\mathrm{C}\left[\sum_{\mathrm{i}}\left|\psi_{\mathrm{i}}><\psi_{\mathrm{i}}\right|\right]^{-1}=\mathrm{P} \tag{16}
\end{equation*}
$$

we find

$$
\mathrm{P}=\left[\begin{array}{cc}
1 & 0 \tag{17}\\
0 & -1
\end{array}\right]
$$

Interested readers will notice that the eigenvalues of both C and P are the following

$$
\begin{equation*}
\lambda_{\mathrm{p}}= \pm 1 \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{c}= \pm 1 \tag{19}
\end{equation*}
$$

Now using antilinear property of T, we express it as [6]

$$
\begin{equation*}
\mathrm{T}=\mathrm{UK} \tag{20}
\end{equation*}
$$

where U is a (2×2) matrix and K is a complex conjugation operation. Let us consider that U is an unknown matrix having the form

$$
\mathrm{U}=\left[\begin{array}{ll}
\mathrm{u}_{1} & \mathrm{u}_{2} \tag{21}\\
\mathrm{u}_{3} & \mathrm{u}_{4}
\end{array}\right]
$$

Considering the relation

$$
\begin{equation*}
K^{2}=1 \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T}^{-1}(-\mathrm{i}) \mathrm{T}=\mathrm{KU}^{-1}(-\mathrm{i}) \mathrm{UK}=\mathrm{K}(\mathrm{i}) \mathrm{U}^{-1} \mathrm{UK}=\mathrm{i} \mathrm{~K}^{2} \tag{23}
\end{equation*}
$$

we find

$$
\mathrm{T}=\left[\begin{array}{ll}
1 & 0 \tag{24}\\
0 & 1
\end{array}\right] \mathrm{K}
$$

Hence it is easy to verify the relations

$$
\begin{align*}
& {[\mathrm{H}, \mathrm{C}]=0} \tag{25}\\
& {[\mathrm{H}, \mathrm{P}] \neq 0} \tag{26}\\
& {[\mathrm{H}, \mathrm{PT}]=0} \tag{27}
\end{align*}
$$

and

$$
\begin{equation*}
[\mathrm{H}, \mathrm{CPT}]=0 \tag{28}
\end{equation*}
$$

4. Discussion and Conclusion

In this model we have derived matrix form of C, P. However matrix form of T is still incomplete due to unknown form of K. Hence the term PT and CPT ant not be considered as symmetry operators. However they can be considered as invariances of H . From the above matrix form of PT one can not get eigenfunctions of H . The same argument is also valid for CPT. Hence the only symmetry operator of the above analysis is C. One can also find that $\mathrm{F}(\mathrm{C})$ also commute with H where

$$
\begin{equation*}
[\mathrm{H}, \mathrm{~F}(\mathrm{C})]=0 \tag{29}
\end{equation*}
$$

where $\mathrm{F}(\mathrm{C})$ is given by.

$$
\begin{equation*}
\mathrm{F}(\mathrm{C})=\frac{\mathrm{C}}{\lambda+\frac{\mathrm{C}}{\lambda+\frac{\mathrm{C}}{\lambda \frac{\mathrm{C}}{\lambda+\mathrm{C}} \ldots \ldots}}} \tag{30}
\end{equation*}
$$

In fact analytical form of $\mathrm{F}(\mathrm{C})$ is very difficult, however one can test its validity considering a numerical model matrix easily.

References

1. C. M. Bender, S. Boettecher. Real spectra in non-Hermitian Hamiltonians having PT-symmetry. Phys. Rev. Lett. 1998(80), 24:5243-5246.
2. C. M. Bender, D. C. Brody and H. F. Jones. Complex extension of Quantum Mechanics. Phys. Rev. Lett. 2002(89), 27 : 270401.
3. Z. Ahmed. C, PT, CPT invariance of pseudo-Hermitian Hamiltonians. arXiv. quantph/0302141v1.
4. B. Rath, Comment on C, PT, CPT invariance of pseudo-Hermitian Hamiltonians [Z. Ahmed arxiv. quant-ph/0302141v1], arXiv:1907.05235[quant-ph].
5. Q. Wang, S. Chia and J. Zhang. PT-Symmetry as a Generalization of Hermiticity, J. Phys. A, 2010,(43):295301.
6. R. Shankar, Principles of Quantum Mechanics, Plenum Press,2005.
