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ABSTRACT 
 

We start with the unique coordinate system of a conical shell and the generalized Hook’s law of 

a three dimensional anisotropic body which is subjected to 6 different stresses and strains 

together with 21 elastic coefficients. Applying equilibrium and stress displacement equations and 

non-dimensionalize all the variables before asymptotically expanding, we are now allowed to 

perform the asymptotic integration process which will derive the first approximation theory of an 

anisotropic conical shell. The theory is valid for anisotropic non-homogeneous materials, which 

can be applied to the layered walls of conical shells with different materials. A choice of small 

length scale allows a system of differential equations accurately formulated for different loading 

and boundary conditions. The derived differential equations of homogeneous isotropic material 

are equivalent to classical theory.  

 

Keywords: Conical Shell, Three Dimensional Anisotropic Element, Non-Homogeneous 

Anisotropic Materials, Generalized Hook’s Law, Boundary Layer, Asymptotic Integration, 

Classical Shell Theory. 

 

INTRODUCTION 

 

The use of composite materials have been wide spread over last 30 years from the aerospace 

vehicles to civil engineering structures, the materials possess such characteristics as high 

strength/density and properly controllable modulus/density ratios and they are generally 

composed of filaments and matrix materials. The filaments are embedded in the matrix materials 

to give additional stiffness and high strength. 

 

The cylindrical, spherical and conical shell theories that we develop in our previous articles are 

common to liquid oxygen storage tanks of outer space rockets, orbital shuttles as well as liquid 

storage tank and building structures. The authors already developed and formulated almost all of 

necessary cylindrical and spherical shell theories of multiple mixture (hybrid) anisotropic 

materials. Details are published in various journals as shown in the References. 
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Figure (1) Coordinates 

 

As shown in Figures 2 and 3 the filaments can be arranged arbitrarily to make a composite 

structure more resistant to loadings. As the mechanical properties of composites vary depending 

on the direction of the fiber arrangement, it is necessary to analyze them by use of an anisotropic 

theory. Composite materials are also generally constructed of thin layers, which may have 

different thickness and different cross-ply angles. The cross-ply angle, ɣ, is the angle between 

major elastic axis of the material and reference axis (see Figures 2 and 3). The variation in 

properties in the direction of the thickness implies non-homogeneity of the material and 

composite structures must thus be analyzed according to theories, which allow for non-

homogeneous anisotropic material behavior.  
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Figure 2. Fiber orientation 

 

 

            Figure (2)  Fiber Orientation and Laminates 

 

According to the exact three-dimensional theory of elasticity, a shell element is considered as a 

volume element. All possible stresses and strains are assumed to exist and no simplifying 

assumptions are allowed in the formulation of the theory. We therefore allow for six stress 

components, six strain components and three displacements. There are thus fifteen unknowns to 

solve for in a three-dimensional elasticity problem. On the other hand, three equilibrium 

equations and six strain displacement equations can be obtained for a volume element and six 

generalized Hook’s law equations can be used. A total of fifteen equations can thus be 

formulated and it is possible to set up a solution for a three-dimensional elasticity problem. It is 

however very complicated to obtain a unique satisfaction of the above fifteen equations and the 

associated boundary conditions. This led to the development of various theories for structures of 

engineering interest. A group of simplifying assumptions that provide a reasonable description of 

the behavior of thin elastic shells proposed by Love (Reference [1]) has led to the development 

of the classical shell theories. 

 

Love’s theory is based upon the well-known hypotheses of thin shell theory. A detailed 

description of classical shell theory can be found in various articles. (References [2] to [6]). The 

system of shell equations derived based on the assumptions is usually regarded as satisfactory for 

thin homogenous, isotropic shells except for problems associated with certain types of loadings 

and where the transverse stresses and strains may be important. Being free from the classical 

assumptions is to apply the asymptotic method to the three-dimensional elasticity equations and 

thus obtain so-called rational two-dimensional shell theories. Asymptotic methods have at their 

foundation the desire to obtain a solution that is approximately valid when a physical parameter 

(or a variable) of the problem which is very small (or very large). The solution is usually of a 

boundary or initial value problem in powers of a parameter, which either appears explicitly in the 

original problems or is introduced in some artificial manner. The highlights of using the 
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asymptotic method to derive shell equations are first to comply with the three-dimensional 

elasticity theory and incorporates the expansion of stress and displacement components in an 

asymptotic series. We can then collect the first approximation by taking only the leading term of 

the expansions. 

 

The derivation of the theories is accomplished by first introducing the shell coordinates and 

dimensions and yet unspecified characteristic length scales via changes in the independent 

variables. Next, the dimensionless stresses and displacements are expanded asymptotically by 

using the thinness of the shell as the expansion parameter. A choice of characteristic length 

scales is then made, and corresponding to different combination of these length scales, different 

sequences of systems of differential equations are obtained. Subsequent integration over the 

thickness and satisfaction of the boundary conditions yields the desired equations governing the 

formulation of the first approximation theory of non-homogeneous anisotropic cylindrical shells. 

 

General Anisotropic Conical Shell Theory 

Based on a non-homogeneous, anisotropic volume element of a conical body with longitudinal, 

circumferential (angular) and radial coordinates being noted as z, Ө and r, respectively, and 

subjected to all possible stresses and strains (Figure [1].). The cone occupies the space between a 

≤ r ≤ a + h and the edges are located at L= 0 and L = L0. Here, a is the inner radius, h the 

thickness and L the cone length. 

Assuming that the deformations are sufficiently small so that linear elasticity theory is valid, the 

following equilibrium and stress-displacement equations [Equations (2.1) and (2.2)] will govern 

the problem: 

  

 

 

o (rτrz),r  +   τθz,θ  + sin α (r σz),z     =    0 

o (rτrθ ), r  +  σθ,θ   +  sin α (r τθz),z  +  τθz  = 0 

o  ( rσr ),r  + τrθ,θ   +  sin α (r τrz),z  -   σθ   =  0 

                                                                                    (2.1) 

 

Uz,z = S11 σz  + S12 σ θ + S13 σr + S14 τrθ  +  S15 τrz  + S16 τ θz 

(1/sinα)(uθ, θ + ur) / r  =  S21 σz  + S22 σ θ + S23 σr + S24 τrθ  +  S25 τrz  + S26 τ θz 

 (Sinα) ur,z  =  S31 σz  + S32 σ θ + S33 σr + S34 τrθ  +  S35 τrz  + S36 τ θz 

(1/sinα) Ur,θ  (1/r)  +  uθ,z  -  (1/sinα) uθ /r   =     S41 σz  + S42 σ θ + S43 σr + S44 τrθ  +  S45 τrz  + S46 τ θz 

(1/sinα) Uz,r  +  sinα ur,z  =  S51 σz  +     S52 σ θ + S53 σr + S54 τrθ  +  S55 τrz  +     S56 τ θz 

uθ,z  +  (1/sinα) Uz,θ / r  =  S61 σz  +  S62 σ θ + S63 σr + S64 τrθ  +  S65 τrz  +   S66 τ θz 

                                                                   (2.2) 

 

 

In the above, are the displacement components in the radial, 

circumferential and longitudinal directions, respectively but all measured by normal radius of 
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curvature, therefore must be adjusted by the conical angle α.    are 

the normal stress components in the same directions and are the 

shear stresses on the  face and face, respectively (Figure 1). A 

comma indicates partial differentiation with respect to the indicated coordinates. The Sij’s (i , j = 

1, 2,…, 6) in (2.2) are the components of compliance matrix and represent the directional 

properties of the material. The compliance matrix is symmetric, Sij = Sji. 

Complete anisotropy of the material is allowed for, making 21 independent material constants. 

We are not allowed to illiminate any of those components since the material properties depend 

on the manufactures set up, or, in the case of aerospace vehicles, a different gravity environment.  

The components can be expressed in terms of engineering constants as follows: 

 

(2.3) 

 

In (2.3), the Ei’s are the Young’s moduli in tension along the direction and and are the 

Poisson’s ratio and shear moduli in the i-j face, respectively. Equation (2.2) implies anisotropic 

property of the material only. Materials to be non-homogeneous, different properties of each 

layer of the shell, we will allow the material property variation in the radial direction as follows: 

 

 

(2.4) 

 

Unlike the majority of theories, which identify material properties from the beginning, this 

theory will allow the properties to be, variable, as hybrid theory. 
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The principal material axes (r', θ', z') in general do not coincide with the body axes of the conical 

shell (r, θ, z). If the material properties S'ij with respect to material axes specified, then the 

properties with respect to the body axes are given by the anisotropic transformation equations: 

 

The shell is free from surface traction at its inner surface while the outer surface is subjected to a 

uniformly distributed tensile force. The boundary condition is then: 

 

 
(2.5) 

We will find it convenient to work with stress resultants rather than the stresses themselves. 

These stress resultants, which are forces and moments per unit length, are obtained by integrating 

with respect to the thickness coordinate. They are: 

 

(2.7) 
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In the above, a is the inner radius of the conical shell and d is the distance from the inner surface 

to the reference surface where the stress resultants are defined. Note that NƟz and NzƟ and MzƟ 

and MƟz respectively are different. This is due to the fact that the terms of the order of thickness 

over radius are not neglected compared to one in the integral expressions. 

 

Formulation of a Boundary Layer Theory 

As explained in the introduction, a theory of shells is distinguished from the exact three 

dimensional elasticity formulation by the fact that one of the coordinates is suppressed by the 

mathematical description. The procedure used here for obtaining the two dimensional thin shell 

equations is that of the asymptotic integration of the (2.1) and (2.2) describing the cylindrical 

shell. As a first step for integrating (2.1) and (2.2), we non-dimensionalize the coordinates as 

follows: 

 

 

(3.1) 

X = z/L, y = (r - a)/h, 0 = 0 / B 

 

 

where L and L0 are quantities which are to be determined later. 

Next, the compliance matrix, the stresses and deformations are non-dimensionalized by the use 

of a representative stress level σ, a representative material property S and the shell radius a as 

follows: 

 

 

(3.2) 

 

 

Where the dimensionless displacements and stresses are functions of  These 

variables, together with their derivatives with respect to are assumed to be of order 

unity. The parameters introduced in (3.1) are thus seen to be characteristic length 

scales for changes of the stresses and displacements in the axial and circumferential directions, 

respectively. 

 

Consider a small parameter €, € < 1. With respect to an arbitrary domain D of the cylinder, M1 is 

said to be of order €
n
 relative to a second quantity M2.  
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(3.3) 

 

 

Where n is an arbitrary between 0 and infinity  

If everywhere in D (with the possible exception of some isolated small regions) the relation  

 

(3.4) 

 

holds for a suitably chosen value of m,          0 < m < 1. According to this definition, two 

quantities are of the same order if n = 0 in the above, while a quantity is of order unity when n = 

0 and M1 = 1. Substitution of the dimensionless variables defined by (3.1) and (3.2) into the 

elasticity equations, (2.1) and (2.2), yields the following dimensionless equations: 

 

(3.5) 

 

 

 

 

(3.6) 
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Where λ is the thin shell parameter, defined as  

 

(3.7) 

 

The parameter λ is representative of the thinness of the conical shell. We will consider only the 

case of thin shell theory as 

 

 

(3.8) 

 

The dimensionless coefficients Sij of the compliance matrix in general are not all of same order.  

We therefore assume that they can be expanded in terms of finite sum as: 

 

 

(3.9) 

 

Where Sij
(n)

 (y) is of order unity or vanish identically. Next, we assume that each displacement 

components, represented by the generic symbol v and each stress component, represented by the 

generic symbol y, and each stress components represented by the generic symbol t, can be 

expanded in terms of a power series in λ
1/2 

 

 

(3.10) 

 

The v
(m)

 and t
(m)

 are of order unity. No convergence properties are assumed for series (3.10) 

except only asymptotic validity for λ. That is, if expansions (3.10) are terminated at some power 

of λ
1/2

, the error in using the expansions rather than the exact solutions tends to zero as λ 

approaches zero. 

 

Length scales L are as yet arbitrary. Their choice, as will be seen in the subjects to follow, 

determines the type of shell theory to be identified. Based in part on the results obtained for 

isotropic, homogeneous shells as shown in Reference [6], the developed theory is equivalent to 

Donnell-Vlasof thin cylindrical shell equation. 

 

The last step of the procedure consists of substituting the expansions for the series and assumed 

length scales into the dimensionless elasticity equations of stress-displacement and equilibrium 

described by (3.5) and (3.6). Upon selecting terms of like powers in λ
1/2

 on both sides of each 

equations and requiring that the resulting equations be integrable with respect to the thickness 

coordinate as well as be capable of identifying the relations for all stresses and displacement 
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components, we will obtain systems of differential equations. The first system of equations of 

“thin shell” theory and we will call it the first approximation system. We can, however, obtain 

stresses and displacements of each layer of thickness coordinate, which can be an advantage of 

the procedure among others. In the following section, the thin shell theories for the combinations 

of length scales can be derived. 

 

Shell Theory of Longitudinal and 

Circumferential Length Scales (Lh)
1/2

  

We will now develop a theory of both characteristic length scales same as (Lh)
1/2

, as follows 

L = (Lh)½,   l = (Lh)½    

                                                                     (4.1) 

 

In the above a is inner radius of conical shell and h is the total thickness of the wall as shown in 

Figure 1 and Figure 3. 

 

The basis of the above equations are first non-dimensionalize each and all the variables to 

compare the magnitudes on equal basis and empirical number, which is used in the theory of 

shells. 

 

The following systems of differential equations are obtained by substituting the characteristic 

length scales (4.1) into (3.5) and (3.6). 

 

By substituting the asymptotic expansions (3.10) for the displacements and stresses and 

expansions (3.9) for the compliance matrix, we obtain the following systems of equations 

representing the first approximation theory. 
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                                                                     (4.2) 
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From the initial terms chosen for the first approximation system.  

where vr , vƟ, vz are the components of displacement at y = 0 surface. You will find the linear y 

dependence of the in-plane displacements.  

 

We will then obtain the in-plane stress-strain relations: 

 

 

 

(4.4) 

 

 

where strain components €i and curvature components ki defined at y = 0, surface for a conical 

shell are given as follows: 

 

 
 

 

                                                                       (4.5) 

 

 

and [C] is the inverse of the first approximation compliance matrix. 
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(4.6) 

 

 

The transverse stresses can now be solved by substituting the in-plane stresses obtained in (4.5) 

into the last equations of (4.7) and integrating with respect to y, we then get:  

 

 

 
 

(4.7) 

 

where Trz, TrƟ and Tr are the stress components at y = 0 and Aij , Bij , Dij and Eij are the products 

obtained by integration of stress strain coefficient components over the thickness coordinate. The 

boundary conditions are:  
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(4.8) 

 

Where p* = p / (σλ), to non-dimensionalize. 

 

 

Application 

We assume here that the contact between layers is such that the strains are a continuous function 

in thickness coordinate. As the Cij are piecewise continuous functions, the in-plane stresses are 

also continuous. We would expect the in-plane stresses to be discontinuous at the juncture of 

layers of dissimilar materials. The transverse stresses are continuous functions of the thickness 

coordinate. We assume here that the contact between layers is such that the strains are a 

continuous function in thickness coordinate. As the Cij are piecewise continuous functions, the 

in-plane stresses are also continuous. We would expect the in-plane stresses to be discontinuous 

at the juncture of layers of dissimilar materials. The transverse stresses are continuous functions 

of the thickness coordinate. 

 

Although, as mentioned above, the theory developed can consider. Random layering, numerical 

results are to be carried out for a four-layer symmetric angle ply configuration. For this 

configuration the angle of elastic axes ɣ is oriented at + ɣ , - ɣ, - ɣ, + ɣ with the shell axis and the 

layers are of equal thickness. 

 

The cone is taken to be clamped at both ends but free to rotate and extend axially at one end.  We 

now choose it to be such that there exists no coupling between Nz and Kz and Mz and €id.  

As the loading applied is axisymmetric, all the stresses and strains are also taken to be 

axisymmetric.  

Numerical calculations are now carried out for a shell of the following dimensions: 
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We will then obtain λ= 0.025 (0.1 / 4.0). Each of the layers is taken to be 0.025 inches thick and 

thus the dimensionless distances from the bottom of the first layer are given by 

 

 
 

Each layer of the symmetric angle ply configuration (elastic symmetry axes y are oriented at (+ɣ, 

-ɣ, - ɣ, +ɣ) is taken to be orthotropic with engineering elastic coefficients of Apollo 38-750 

Graphite Fiber as follows: 

 

E1 = 300 Gpa 

E2 = 260 Gpa 

G12 = 52 Gpa 

 

Here, direction 1 signifies the direction parallel to the fibers, while 2 is the transverse direction. 

Angles chosen were ɣ = 0, 15, 30, 45 and 60. Use of the transformation equations (2.7) then 

yields the mechanical properties for the different symmetric angle ply configurations. 

 

Shown in Fig. 3 is the variation of the dimensionless radial displacement with the actual distance 

along the axis for the different ply angles. The reference surface for the chosen configuration is 

given by d/h = ½. The integration constants are determined from the edge conditions. The radial 

deformations of the length scales (Lh)
1/2

 is shown in Fig. 1 and 2. One will notice the radial 

deformation rapidly increases along the length scale near the edge while further inside 

deformations show little change. This area is the so-called edge effect zone or boundary layer; 

the American Petroleum institute adopted similar theories for its cylindrical shell gas storage 

tank design (API 650). Locating the edge effect zone can simplifies the calculation of 

circumferential and longitudinal stiffeners as shown in the References [8] through [11], in 

relation to the buckling problems, Reference [15]. 

 

It is also shown that wide variations in the magnitude of radial displacement take place with 

change in the cross-ply angle. The maximum displacement occurs at ɣ = 30 degrees while the 

minimum displacement is at ɣ = 60 degrees. 

 

In each case, the displacements increase in ɣ up to ɣ =30 degrees, and thereafter will decrease. 

Weak and smooth edge effects are the case for large cross-ply angles. 
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Figure (3) Conical Shell under Internal Pressure 

 
 

       Figure (4)  Axi-Symmetric Deformations 
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CONCLUSIONS 

 

In this paper, we first discuss how the approximation shell theories are derived by use of the 

method of asymptotic integration of the exact three-dimensional elasticity equations for a hybrid 

anisotropic conical shell. 

 

The analysis remains valid for materials, which are non-homogeneous to the extent that their 

properties are allowed to vary with the thickness coordinate. 

 

As a result of the application of this method, one can obtain shell approximate theory of various 

orders in a systematic manner. The first approximation theories derived in this paper represent 

the simplest possible shell theories for the corresponding length scales considered. Although 21 

elastic coefficients are present in the original formulation of the problem, only six appear in the 

first approximation theories. The shell theories thus assume the existence of a plane of elastic 

symmetry.  

 

It was seen that various shell theories are obtained by using different combinations of the length 

scales introduced in the non-dimensionalization of the coordinates and that each theory possesses 

unique properties such as the orders of stress magnitudes, displacement components and edge 

effect penetration. In this research, we considered a theory with length scales of (Lh)
1/2

 for both 

longitudinal and circumferential directions, where L the actual cone length and h is the total 

thickness of the cone. 

 

To illustrate the use of these theories, the application to layered shells was shown. The results of 

the analysis showed the radial displacement first increases with increase of the angle between the 

axis of elastic symmetry and longitudinal shell axis, being largest at 30 degrees. The theory of 

axial and circumferential length scale of (Lh)
1/2

 show as a significant edge effect exists and that 

the penetration of the edge effect changes with the angle in similar fashion as for the radial 

displacement, being deepest at 30 degrees.  
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