UNEXTENDIBLE MAXIMALLY ENTANGLED BASIS IN $\boldsymbol{C}^{\mathbf{8}} \otimes \boldsymbol{C}^{\mathbf{8}}$

Xin-Yu Ye ${ }^{1}$ and Yuan - Hong Tao ${ }^{\dagger}$
Department of Mathematics, Yanbian University
Jilin, 133002, CHINA

Abstract

In order to construct unextendible maximally entangled basis (UMEB) in $C^{8} \otimes C^{8}$, we find that it can be constructed from that in $C^{4} \otimes C^{4}$. In this paper, we will use the 12 member UMEB in $C^{4} \otimes C^{4}$ to construct 56 -member UMEB in $C^{8} \otimes C^{8}$, and give the corresponding proof.

I INTRODUCTION

S.Bravyi and J.A.Smolin [1] generalized the notion of the unextendible product base (UPB) to the unextendible entangled basis (UEB), which is a set of bipartite pure states $\left|\psi_{i}\right\rangle$ each of which has entanglement α but whose complement space is non-empty and contains no states of entanglement α. When $\alpha=1$, the basis is called unextendible maximally entangled basis (UMEB) [1]. They also proved that there are no UMEB in $C^{2} \otimes C^{2}$ and constructed a 6 -member UMEB in $C^{3} \otimes C^{3}$ and a 12-member UMEB in $C^{4} \otimes C^{4}$.
Bin Chen and Shao-Ming Fei [2] provided a systematic ways of constructing a set of d^{2} orthonormal maximally entangled states in $C^{d} \otimes C^{d^{\prime}}\left(\frac{d^{\prime}}{2}<d<d^{\prime}\right)$. In 2014, Mao-Sheng Li and Yan-Ling Wang [3] gave an explicit construction of UMEB by considering the Schmidt number of the complementary space of the states they constructed. Later, they [4] showed that for a give N-member UMEB in $C^{d} \otimes C^{d}$, there is a \widetilde{N}-member UMEB in $C^{q d} \otimes C^{q d}$ for any $q \in \mathrm{~N}$ where $\widetilde{N}=(q d)^{2}-q\left(d^{2}-N\right)$.

In this paper, we try to contruct maximally entangled states in $C^{8} \otimes C^{8}$ from that in $C^{4} \otimes C^{4}$, and prove that these states constitute a UMEB.

II. UMEBS IN $\mathbf{C l}^{\text {qd }} \otimes \mathbf{C}^{\text {qd }}$

Definition ${ }^{[1]}$ A set of states $\left\{\left|\psi_{i}\right\rangle \in C^{d} \otimes C^{d}: a=1,2, \ldots, \mathrm{n}, \mathrm{n}<\mathrm{d}^{2}\right\}$ is called an n -member UMEB if and only if:
(i) $\left|\psi_{a}\right\rangle, a=1,2, \ldots, \mathrm{n}$, are maximally entangled;
(ii) $\left\langle\Phi_{a} \mid \Psi\right\rangle=\delta_{\mathrm{ab}}$;
(iii) If $\left\langle\Phi_{a} \mid \Psi\right\rangle=0$ for all $\mathrm{a}=1,2, . . \mathrm{n}$, then $|\Psi\rangle$ cannot be maximally entangled.

Here, $\left|\Phi_{a}\right\rangle$ can be expressed as

$$
\begin{equation*}
\left|\Phi_{a}\right\rangle=\left(I \otimes U_{a}\right) \frac{1}{\sqrt{d}} \sum_{i=0}^{d-1}|i\rangle \otimes|i\rangle, \tag{1}
\end{equation*}
$$

where, I is the $\mathrm{d} \times \mathrm{d}$ identity maxtrix, U_{a} is any unitary maxtrix. We can know form (1) that,

[^0]the conditions (i-iii) can now be rephrased as [1]
(i) $U_{a}, a=1,2, \ldots, \mathrm{n}$, and all unitary metrices;
(ii) $\operatorname{Tr}\left(U_{a}^{\dagger} U_{b}\right)=d \delta_{a b}$;
(iii) If $\operatorname{Tr}\left(U_{a}^{\dagger} U\right)=0$ for all $a=1,2, . ., \mathrm{n}$, then U cannot be unitary.

Lemma ${ }^{[4]}$ If there is an N-member UMEB in $C^{d} \otimes C^{d}$, then for any $q \in \mathrm{~N}$, there is a \widetilde{N}-member, $\widetilde{N}=(q d)^{2}-q\left(d^{2}-N\right)$, UMEB in $C^{q d} \otimes C^{q d}$.

Let $\left\{U_{n}\right\}, n=1,2, . ., N<d^{2}$, be the set of unitary matrices that given rise to the N-member UMEB in $C^{d} \otimes C^{d}$, and

$$
\mathrm{S}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right], \mathrm{W}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \xi_{\mathrm{q}} & \xi_{\mathrm{q}}^{2} & \cdots & \xi_{\mathrm{q}}^{\mathrm{q}-1} \\
1 & \xi_{\mathrm{q}}^{2} & \xi_{\mathrm{q}}^{4} & \cdots & \xi_{\mathrm{q}}^{2(\mathrm{q}-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \xi_{\mathrm{q}}^{\mathrm{q}-1} & \xi_{\mathrm{q}}^{2(\mathrm{q}-1)} & \cdots & \xi_{\mathrm{q}}^{(\mathrm{q}-1)^{2}}
\end{array}\right]
$$

where $\xi_{q}=e^{\frac{2 \pi \sqrt{-1}}{q}}$.
Denote $U_{n m}=\sum_{k=0}^{d-1} e^{\frac{2 \pi \sqrt{-1}}{q} k n|k \oplus m\rangle\langle k|} . m, n=0, \ldots, d-1$,
Set

$$
\begin{gather*}
U_{n m}^{g h}=\left(W^{g} S^{h}\right) \otimes \mathrm{U}_{\mathrm{nm}}, 0 \leq g \leq \mathrm{q}-1,1 \leq h \leq \mathrm{q}-1, m, n=0, \ldots, \mathrm{~d}-1 . \tag{2}\\
U_{n}^{g}=W^{g} \otimes U_{n}, \quad g=0,1, \ldots, \mathrm{q}-1, n=1,2, \ldots, \mathrm{~N}<\mathrm{d}^{2} \tag{3}
\end{gather*}
$$

then $\left\{U_{n m}^{g h}, U_{n}^{g}\right\}$ give a $(q d)^{2}-q\left(d^{2}-N\right)$-member UMEB in $C^{q d} \otimes C^{q d}$.
The specific construction method will be described in detail by the example of UMEB in $C^{8} \otimes C^{8}$.

III.UMEBS IN $\boldsymbol{C}^{\boldsymbol{8}} \otimes \boldsymbol{C}^{\boldsymbol{8}}$

According to the above content, we can construct UMEB in $C^{8} \otimes C^{8}$ from the UMEB in $C^{2} \otimes C^{2}$ or in $C^{4} \otimes C^{4}$ because of $8=2 \times 4$. In Ref [1], we have known that UMEBs do not exist in $C^{2} \otimes C^{2}$. Therefore, in order to construct UMEBs in $C^{8} \otimes C^{8}$, we have to use the 12-member UMEBs in $C^{4} \otimes C^{4}$.

We can calculate that there are 56 -member UMEBs in $C^{8} \otimes C^{8}$ by the formula $\widetilde{N}=$ $(q d)^{2}-q\left(d^{2}-N\right)$, where $q=2, d=4, N=12$. Now, it's time to construct the 56 -member UMEBs by two parts.

1. 32 maximally entangled states in $\left\{U_{n m}^{g h}\right\}$

In this case, it's easy to know that:

$$
\mathrm{S}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \mathrm{W}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

From the formula (2), we can get that

$$
U_{n m}^{g h}=\left(W^{g} S^{h}\right) \otimes U_{n m},
$$

where

$$
\begin{aligned}
& \mathrm{W}^{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \mathrm{W}^{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \mathrm{w}=\mathrm{e}^{\frac{2 \pi \sqrt{-1}}{4}}=\mathrm{i}, \quad S^{h}=S, \quad h=1, \\
& U_{n m}=\sum_{\mathrm{k}=0}^{3} \mathrm{e}^{(-1) \times \mathrm{kn}|\mathrm{k} \oplus \mathrm{~m}\rangle\langle\mathrm{k}|}, \mathrm{m}, \mathrm{n}=0,12,3 .
\end{aligned}
$$

With the formula (1), we get the following 32 maximally entangled states

$$
\begin{equation*}
\left|\Phi_{a}\right\rangle=\left(I \otimes U_{n m}^{g h}\right) \frac{1}{2 \sqrt{2}} \sum_{g=0}^{7}|g\rangle \otimes|g\rangle=\frac{1}{2 \sqrt{2}} \sum_{g=0}^{7}|g\rangle \otimes\left(\left(\left(W^{g} S^{h}\right) \otimes U_{n m}\right)|g\rangle\right), \tag{8}
\end{equation*}
$$

where $r=1,2, s=1, \mathrm{~m}, \mathrm{n}=0,1,2,3$
The above 32 maximally entangled states in (8) are as follows:
$\left|\Phi_{1,2, \ldots, 8}\right\rangle=\frac{1}{2 \sqrt{2}}\left(a_{1}\left|04^{\prime}\right\rangle+a_{2}\left|15^{\prime}\right\rangle+a_{3}\left|26^{\prime}\right\rangle+a_{4}\left|37^{\prime}\right\rangle+a_{5}\left|40^{\prime}\right\rangle+a_{6}\left|51^{\prime}\right\rangle+a_{7}\left|62^{\prime}\right\rangle+a_{8}\left|73^{\prime}\right\rangle\right)$,
$\left|\Phi_{9,10, \ldots, 16}\right\rangle=\frac{1}{2 \sqrt{2}}\left(a_{1}\left|05^{\prime}\right\rangle+a_{2}\left|16^{\prime}\right\rangle+a_{3}\left|27^{\prime}\right\rangle+a_{4}\left|34^{\prime}\right\rangle+a_{5}\left|41^{\prime}\right\rangle+a_{6}\left|52^{\prime}\right\rangle+a_{7}\left|63^{\prime}\right\rangle+a_{8}\left|74^{\prime}\right\rangle\right)$,
$\left|\Phi_{17,18, \ldots, 24}\right\rangle=\frac{1}{2 \sqrt{2}}\left(a_{1}\left|06^{\prime}\right\rangle+a_{2}\left|17^{\prime}\right\rangle+a_{3}\left|24^{\prime}\right\rangle+a_{4}\left|35^{\prime}\right\rangle+a_{5}\left|42^{\prime}\right\rangle+a_{6}\left|53^{\prime}\right\rangle+a_{7}\left|64^{\prime}\right\rangle+a_{8}\left|75^{\prime}\right\rangle\right)$,
$\left|\Phi_{25,26, \ldots, 32}\right\rangle=\frac{1}{2 \sqrt{2}}\left(a_{1}\left|07^{\prime}\right\rangle+a_{2}\left|14^{\prime}\right\rangle+a_{3}\left|25^{\prime}\right\rangle+a_{4}\left|36^{\prime}\right\rangle+a_{5}\left|43^{\prime}\right\rangle+a_{6}\left|53^{\prime}\right\rangle+a_{7}\left|60^{\prime}\right\rangle+a_{8}\left|71^{\prime}\right\rangle\right)$,
the above coefficients $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right)$ take eight column values in the following matrix:

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \mathrm{i} & -1 & -\mathrm{i} & 1 & \mathrm{i} & -1 & -\mathrm{i} \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & -\mathrm{i} & -1 & \mathrm{i} & 1 & -\mathrm{i} & -1 & \mathrm{i} \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & \mathrm{i} & -1 & -\mathrm{i} & -1 & -\mathrm{i} & 1 & \mathrm{i} \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & -\mathrm{i} & -1 & \mathrm{i} & -1 & \mathrm{i} & 1 & -\mathrm{i}
\end{array}\right]
$$

2. 24 maximally entangled states in $\left\{U_{n}^{g}\right\}$

In Ref. [1], we get the following 12- member UMEBs in $C^{4} \otimes C^{4}$ explicitly:

$$
\begin{aligned}
& U_{1}=\frac{1}{\sqrt{2}} \sigma_{x} \otimes\left(\sigma_{x}-\sigma_{y}\right), U_{2}=\frac{1}{\sqrt{2}}\left(\sigma_{x}-\sigma_{y}\right) \otimes \sigma_{z}, U_{3}=\frac{1}{\sqrt{2}} \sigma_{z} \otimes\left(-\sigma_{y}+\sigma_{z}\right), \\
& U_{4}=\frac{1}{\sqrt{2}}\left(-\sigma_{y}+\sigma_{z}\right) \otimes \sigma_{z}, U_{5}=\frac{1}{3}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) \otimes\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right),
\end{aligned}
$$

and $\left\{\mathrm{U}_{6}, \ldots, \mathrm{U}_{12}\right\}=\left\{\mathrm{I} \otimes \mathrm{I}, \mathrm{I} \otimes \sigma_{\mathrm{x}}, I \otimes \sigma_{\mathrm{y}}, I \otimes \sigma_{\mathrm{z}}, \sigma_{x} \otimes I, \sigma_{y} \otimes I, \sigma_{\mathrm{z}} \otimes \mathrm{I}\right\} \quad$, where $\quad \sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \sigma_{\mathrm{z}}$ are the Pauli matrices.

From the formula (3), we get that:

$$
\mathrm{U}_{\mathrm{n}}^{1}=\left[\begin{array}{ll}
\mathrm{U}_{\mathrm{n}} & \mathrm{O}_{4} \\
\mathrm{O}_{4} & \mathrm{U}_{\mathrm{n}}
\end{array}\right], \quad \mathrm{U}_{\mathrm{n}}^{2}=\left[\begin{array}{cc}
\mathrm{U}_{\mathrm{n}} & \mathrm{O}_{4} \\
\mathrm{O}_{4} & -\mathrm{U}_{\mathrm{n}}
\end{array}\right]
$$

where $n=1,2, \ldots, 12$.
By $\left|\psi_{g}\right\rangle=\left(I \otimes U_{a}\right) \frac{1}{2 \sqrt{2}} \sum_{g=0}^{7}|g\rangle \otimes|g\rangle$, we can get the other 24 maximally entangled states.
Next, we prove that the above 56 maximally entangled states in $\left\{U_{n m}^{g h}, U_{n}^{g}\right\}$ is a 56 -member UMEB in $\mathrm{C}^{8} \otimes \mathrm{C}^{8}$.
(1) Since $W^{g}, S, U_{n m}$ are all unitary, so are $\left\{U_{n m}^{g h}, U_{n}^{g}\right\}$. It's obvious to find that $\mathrm{n}=56<$ $\mathrm{d}^{2}=64$, so the given set of matrices satisty the first condition of UMEB.
(2) In order to prove the orthogonality of the these unitary states, we consider three different cases:
(i) inner products in between two elements in $\left\{U_{n m}^{g h}\right\}$

$$
\begin{aligned}
\operatorname{Tr}\left(\left(U_{n m}^{g h}\right)^{\dagger} U_{\tilde{n} \tilde{m}}^{\widetilde{g h}}\right) & =\operatorname{Tr}\left(\left(\left(W^{g} S^{h}\right) \otimes U_{n m}\right)^{\dagger}\left(\left(W^{\tilde{g}} S^{\widetilde{h}}\right) \otimes U_{\tilde{n} \tilde{m}}\right)\right) \\
& =\operatorname{Tr}\left(\left(\left(W^{g} S^{h}\right)^{\dagger}\left(W^{\tilde{g}} S^{\widetilde{h}}\right)\right) \otimes U_{n m}^{\dagger} U_{\tilde{n} \tilde{m}}\right) \\
& =8 \delta_{\mathrm{g} \tilde{\mathrm{~g}}} \delta_{\mathrm{h} \tilde{\mathrm{~h}}} \delta_{\mathrm{n} \tilde{\mathrm{n}}} \delta_{\mathrm{m} \tilde{\mathrm{~m}}}
\end{aligned}
$$

(ii) inner products in between two elements in $\left\{U_{n}^{g}\right\}$

$$
\begin{aligned}
\operatorname{Tr}\left(\left(U_{n}^{g}\right)^{\dagger} U_{\tilde{n}}^{\tilde{h}}\right) & =\operatorname{Tr}\left(\left(W^{g} \otimes U_{n m}\right)^{\dagger}\left(W^{g} \otimes U_{\tilde{n}}\right)\right) \\
& =\operatorname{Tr}\left(\left(\left(W^{g}\right)^{\dagger}\left(W^{\widetilde{h}}\right)\right) \otimes U_{n}^{\dagger} U_{\tilde{n}}\right) \\
& =8 \delta_{\mathrm{g} \tilde{\mathrm{~g}}} \delta_{n \widetilde{n}} .
\end{aligned}
$$

(iii) inner products between one elements in $\left\{U_{n m}^{g h}\right\}$ and the other one in $\left\{U_{n}^{g}\right\}$

$$
\begin{aligned}
\operatorname{Tr}\left(\left(U_{n m}^{g h}\right)^{\dagger} U_{\tilde{n}}^{\tilde{g}}\right) & =\operatorname{Tr}\left(\left(\left(W^{g} S^{h}\right) \otimes U_{n m}\right)^{\dagger}\left(W^{\tilde{g}} \otimes U_{\tilde{n}}\right)\right) \\
& =\operatorname{Tr}\left(\left(\left(W^{g} S^{h}\right)^{\dagger} W^{\tilde{g}}\right) \otimes U_{n m}^{\dagger} U_{\tilde{n}}\right) \\
& =0
\end{aligned}
$$

So the given set of matrices satisty the second condition of UMEB.
(3) Assume that $U \in \mathrm{M}_{8}(\mathrm{C})$ satisty

$$
\operatorname{Tr}\left(U^{\dagger} U_{n m}^{g h}\right)=0 \text { and } \operatorname{Tr}\left(U^{\dagger} U_{n}^{g}\right)=0
$$

Let $V_{1}=\operatorname{span}\left\{U_{n m}^{g h}\right\}, \operatorname{dim} V_{1}=32$. Denote

$$
\mathrm{V}_{2}=\left\{\left.\left[\begin{array}{cc}
\mathrm{A}_{1} & 0 \\
0 & \mathrm{~A}_{2}
\end{array}\right] \right\rvert\, \mathrm{A}_{1}, \mathrm{~A}_{2} \in \mathrm{M}_{4}(\mathrm{C})\right\}
$$

then $\operatorname{dimV}_{2}=32$. We have $\operatorname{Tr}\left(A_{q}{ }^{\dagger} U_{n m}^{g h}\right)=0(\mathrm{q}=1,2)$. Thus for any matrix $B \in \mathrm{~V}_{1}$, $\operatorname{Tr}\left(A_{q}{ }^{\dagger} B\right)=0(\mathrm{q}=1,2)$. Namely, $\mathrm{V}_{2} \subseteq \mathrm{~V}_{1}^{\perp}$. Accounting to the dimensions of $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and $\mathrm{M}_{8}(\mathrm{C})$, we obtain $\mathrm{V}_{1}{ }^{\perp}=\mathrm{V}_{2}$. Set $\mathrm{V}_{3}=\operatorname{span}\left\{U_{n m}^{g h}, U_{n}^{g}\right\}$. Clearly, $\mathrm{V}_{3}{ }^{\perp} \subset \mathrm{V}_{1}{ }^{\perp}=\mathrm{V}_{2}$. Therefore $U \in \mathrm{~V}_{3}{ }^{\perp}$, and the matrix U has the form

$$
U=\operatorname{diag}\left(\mathrm{W}_{1}, \mathrm{~W}_{2}\right) \quad \text { where } \mathrm{W}_{1}, \mathrm{~W}_{2} \in \mathrm{M}_{4}(\mathrm{C})
$$

In addition, $\operatorname{Tr}=\left(U^{\dagger} U_{n}^{g}\right)=0$, we have

$$
\operatorname{Tr}\left(\left[\begin{array}{cc}
\mathrm{W}_{1} & 0 \\
0 & \mathrm{~W}_{2}
\end{array}\right]^{\dagger}\left[\begin{array}{cc}
U_{g} & 0 \\
0 & \pm U_{g}
\end{array}\right]\right)=0
$$

i.e. $\operatorname{Tr}\left(\mathrm{W}_{1}^{\dagger} U_{g}\right) \pm \operatorname{Tr}\left(\mathrm{W}_{2}^{\dagger} U_{g}\right)=0$, we have $\operatorname{Tr}\left(\mathrm{W}_{1}^{\dagger} U_{g}\right)=\operatorname{Tr}\left(\mathrm{W}_{2}^{\dagger} U_{g}\right)=0$ for $g=1, \ldots 8$, which implies $\mathrm{W}_{1}, \mathrm{~W}_{2} \notin \mathrm{U}(4)$ and hence $U \notin U(8)$. Therefore we conclude that $\left\{U_{n m}^{g h}, U_{n}^{g}\right\}$ is a 56-member UMEB in $C^{8} \otimes C^{8}$.

IV.CONCLUSION

We have constructed 32 and 24 maximally entangled states from $\left\{U_{n m}^{g h}\right\}$ and $\left\{U_{n}^{g}\right\}$, respectively. Then we proved their orthogonality in three cases: inner products between two elements in $\left\{U_{n m}^{g h}\right\}$, inner products between two elements in $\left\{U_{n}^{g}\right\}$, inner products between one
elements in $\left\{U_{n m}^{g h}\right\}$ and the other one in $\left\{U_{n}^{g}\right\}$. We can calculate that there are 56 members UMEB. In the end, we verify the conclusion of the literature [4] with the structure of UMEB in $C^{8} \otimes C^{8}$.

V. REFERENCE

[1] S. Bravyi, and J. A. Smolin, Unextendible maximally entangled bases. Phys. Rev. A 84, 042306 (2011).
[2] B. Chen and S. M. Fei, Unextendible maximally entangled bases and mutually unbiased bases. Phys. Rev. A 88, 034301 (2013).
[3] Mao-Sheng Li, Yan-Ling Wang, Zhu-Jun Zheng, Unextendible maximally entangled bases in $C^{d} \otimes C^{d^{\prime}}$. Phys. Rev. A 89, 062313 (2014).
[4] Yan-Ling Wang, Mao-Sheng Li, Shao-Ming Fei, Conneting the UMEB in $C^{d} \otimes C^{d^{\prime}}$ with partial Hadamard matrices. Quantum Information Processing. 16, 84(2017)
[5] G. J. Zhang, Y. H. Tao, Y. F. Han, X. L. Yong, S. M. Fei. Constructions of Unextendible Maximally Bases in $C^{d} \otimes C^{d^{\prime}}$. Sci. Rep. 8(1), 319(2018)
[6] G. J. Zhang, Y. H. Tao, Y. F. Han, X. L. Yong, S. M. Fei. Unextendible maximally entangled bases in $C^{p d} \otimes C^{q d}$. Quantum Information Processing. 17, 58(2018)

[^0]: * This work is supported by Natural Science Foundation of China under numbers 11761073.

 1 First author : Xin-Yu Ye, Email: $1144850492 @ q q . c o m$
 † Corresponding author: Yuan-Hong Tao, Email: taoyuanhong12@126.com

