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ABSTRACT

In this paper, we analytically evaluate the one-way information deficit (OWID) for the X
states with four parameters under local nondissipative channels, which includes phase flip
channel, bit flip channel and bit-phase flip channel. We find that the OWID under the phase
flip channel is positive, and greater than the OWID under the bit-phase flip channel, the
latter is also greater than the OWID under the bit flip channel.

Keywords: One-way information deficit; phase flip channel; bit flip channel; bit-phase flip
channel.

I. INTRODUCTION

Quantum deficit is one nonclassical correlation besides entanglement and quantum discord,
which originates in question how to use nonlocal operation to extract work from a
correlated system coupled to heat bath. Oppenheim et al.[1] defined the work deficit

AEWt _WI! (1)
where W, is the information of the whole system and W, is the localizable

information.Recently, Ollivier et al.[2] give the definition of the one-way information
deficit (OWID) by Von Neumann measurement on one side,

A (p®)= min S[ZHK pakaj—S(pab). @)
k k

The state of two-qubit system under local environment can be represented with a
completely positive trace-preserving map, which can be written in the operator-sum

representation[3]:
&(p)= Z(Ei ®F, )P(Ei ® Ej)“ ,
ivj
where Ei(")(sz, B) is the Kraus operator representing the channel A or B, and
Z Ei(k)Ei(k)+ =1 In this paper, we will discuss three Markovian noise channels: phase flip

channel, bit flip channel and bit-phase flip channel, which are represented with two Kraus
operators as follows, respectively,
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where P is the probability the noise act on the qubit.

Up to now, there are many achievements about one-way deficit and quantum discord,
which can be seen in their literature[4-8]. In 2013, Yao-Kun Wang et al.[8] analytically
evaluated the OWID for Bell-diagonal state and X states with four parameters, described
the dynamic behavior of the OWID under phase flip channel. In this paper, we intend to
evaluate the OWID of X states with four parameters different channels.

This paper is organized as follows. In section II, we will evaluate the dynamics of OWID
for X States with four parameters under bit flip channel in detail. In section 11, we will
calculate the dynamics of OWID for X States with four parameters under phase flip
channel and bit-phase flip channel analogously, and make a comparasion. A brief
conclusion is given in section V.

I1. The OWID for X States with four parameters under bit flip channel

We consider the following 4-parameter quantum system,

1+s+c, 0 0 c,—C,
0 1 0 1-s—-c, ¢ +c, 0 . ©)
4 0 c,+C, 1l+s-c, 0
c,—C, 0 0 1-s+c,

where S, ¢, C,, C; are all real numbers and
o] <les| <les], 0 <[5 <1=]c, (7

Then under the bit flip channel (4) we have

g(pab):%<l @1 +(1-p)l ®s -0, +¢,0,®0,+(1-p)c,0,®0, +(1- p)c,o, ®O'3), (8)

©

it is easy to see that g(pab) is also X state and satisfies conditions in Egs.(6) and (7).
A = Z(l_(l_ p)ic, —y/c2 +2¢,,(1— pf +c2(L- p)' +s(1- p)zj ,
4
1
s(p")=-3 4 logs
i1

The eigenvalues of state in Eq.(8) are
1
12 =l[1_(1_ p)2C3 +\/C22 +2C1C2(1_ p)2 +C12(1_ p)4 +S(1_ )2 )
1
7o =1~ pYe, ~ e ~20, (1 pY /(4 p)' +sl1—p)
2= (1-0- PP, + e} 26,1 pF +ci(L-p) +sl—p) ).
Then its entropy is given by
1 2 2 2 5 5 2
= Z—Z[(l—(l— p)c, —\/c2 +2¢C,(1-p) +c/(1-p) +s°(1-p) )
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.|og(1—(1— p)’ cy—c2 + 20, (1- p) +¢7 (1 p)* +5° (1 p)z)

+[1-(1-p) e, et + 266, (1 p) 4 (L-p) + s(1-p)']

.Iog(l—(l— p)2 C, +\/c§ +2¢,c, (1- p)2 +c;(1- p)4 +s(1- p)z)

+[1-(1- ) e, - et ~20c, (1 p) + 6 (L p) +s(L-p)']

-Iog(l—(l— p)2 C, —\/cj —2c,c,(1- p)2 +c; (1- p)4 +s(1- p)z)

+(1_(1_ p)z Cs +\/C22 -2c,c,(1- p)2 +ef(1- p)4 +s(1- p)z)

-Iog(l—(l— p)c, +\/cz2 ~2¢6,(1-p) +c?(1-p) +s(1- p)z)

: 9)
Next, we discuss the OWID of the X state g(pab) in Eq.(8). Let {IT, = [K)(K |,k = 041} be
the local measurement for the particle b along the computational base ﬂ k>} then any Von
Neumann measurement for the particle b can be written as
B, =VILV" k=01, (10)
for some unitaryV e U (2) Since any unitary V can be described as
V=tl+iy-o, (11)

with teR,¥=(V,, ¥, ¥s) and t?+y2+y2+y2=1. After the measurement B, the

state o will be changed to the ensemble {,Ok, pk} with
pc=(1®B)p(I1®B,); p =tr(1®B,)p(I®B,). (12)
To evaluate p, and P,, we write

Py Ok :(I ® B, )p(l ® Bk)

:%(| ov)ier,iev)

-(l Rl +(1-p)l ®s-0,+¢0,®0c,+(1-p)fc,0,R0, +1-p)c,o, ®0'3)

(1ev)iern,)Iev)

:% | ®VITV * +% | ®VITV “o VI,V * +%al ®VILV “oVIT,V *
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2 2
+ 02(1; p) &, OVILV "o VIV " + C3(1; p) &, ®VILV "o VIV *
By the following relations in [7] .
VoV = (0 +y] - yi = ;o + 2ty + iy o, + 2y, + Vv )os
VioN =2ty + iy, o+ +¥E -y =¥ o + 20t + VoY Jor

Vo =20ty + Yo )Jou + 2ty + VaYsJo + (€ + Vi - ¥~ Vi o
and
o1, =Ty ILooll =-TI1, I1;0,I1; =0,
for j=01k =12, we obtain that

1 .
Popo = Z(I +5(1_ p)Z3| +0,2,0, +Cz(1_ p)2 2,0, +C3(1_ p)2 2303)®VHI<V '

1 N
p.o, = Z(I ~s(1- p)z, —¢,z,0, - ¢,(1- p)’ 2,0, —c,(1— p)’ 2303)®VHkV ,
where

2, =2=ty, +Vi¥s) 2z =20ty +VoYs) Z=(t2+yZ-yZ—VZ)

It can be directly verified that
22 +22+17) =1.
Let M =s(1- p)z,l +¢,z,0,+¢,(1- p)’ 2,0, +¢,(1— p) z,0,, then

1 . 1 N
popozz(l"'M)@VHkV , p1p1:Z(I_M)®VHkV -

By the Eq.(20) in [8], the eigenvalues of %(I + M) and %(I - M) are %(1+¢—6?),

1 1 1
Z(1+¢+‘9)’ and Z(l_¢_‘9)’ Z(1—¢+¢9),where

2 2
§=sl- P 0 = oz +fe,z0- pF| +|ez,— pF[
then the entropy of »"IT, p™II, is

S[anpabnkj = f(4,0)

- A log,

i=5
:2—%[(1+¢—9)Iog(1+¢—9)+(1+¢+9)Iog(1+¢+ 6)
+(1-p—0)log(1-p—0)+(1—-p+0)log(1-¢+0)|.
By use of the domain of logarithmic function f (¢, <9) in Eq.(7), we obtain the range

of @ and ¢ as follows,
0<le|<O<|e|<L-1<g<1.
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We can verify that (- ¢,9)= f(¢,8), the graph of f(¢,8) is symmetrical with respect
to the @ -axis; moreover,

_ 2 2]
ﬂ:_lmg (1+9)2 <O, 0<9<1,
00 4 "\ (1-0) -¢ |

- 2 o]
i:—llog w <0, 0<g¢<],
op 4 | (1-¢) -6

then f(g,6) is a monotonic decreasing function. When 6 =|c,|, by Egs.(7), (22) and
(24), we can obtain that ¢ =|s|.

By Eq.(7), the projection of f(¢, 6’) on the plane ¢ < @is a symmetrical rectangle with
respect to the @ -axis, and by use of the monotonicity of f(¢, 49) in the positive

directionof ¢ and @, f(4,6) can obtain its minimum at the point (s}|c;|), and the
minimum of f (¢, &) is given by

min S(Zﬂkpat’nkj = 2—%[(1+ s—C,)logl+s—c;)+([1+s+c,)logl+s +c,)

+(1-s—c,)logll—s—c;)+(1-s+c,)logl—s +c,)]
By Egs.(9) and (26), the OWID of the state in Eq.(8) is given by

A~ (2(p®)) = i[(l ¢, (1-p) ) \/C +¢G,(1-p) +c2(1-p) +s*(1-p)’

Iog(l c;(1-p) ) \/c +¢,6,(1-p) +c2(1-p) +s*(1-p)’

(26)

(1 c;(1-p) ) \/c +¢,6,(1-p) +c2(1-p) +s*(1-p)°
109(1-¢, (1= )} + & -0, (1 pY +cE (1 p)' +5' (1- p)
+(1+ c,(1- p)z)_\/clz +6,(1-p)" +¢; (L-p) +5° (1~ p)’

Iog(1+c (1-p) ) \/c +¢C,(1-p) +c2(1-p) +s*(1-p)’

(1+c(1 p) ) \/c +6,6,(1-p) +c2(1-p) +s*(1-p)°

Iog(1+c (1-p) ) \/c +0C, (1-p) +¢(1-p)' +5*(1-p) }

_%[(1+s—c3)log(1+s—c3)+(1+s+cg)log(1+s+03)

+(1-s—¢;)log(1-s—c;)+(1—-s+c;)log(1-s+c,) .

(27)
As an example, for s =0.3,¢, =0.3,¢c, = 0.4,c, = 0.56, the dynamic behavior of OWID
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of the state under the bit flip channel is depicted in Fig.1. We can find that the OWID of the

bit flip channel dwindle with increasing probability until P = 0.4 then the function of
OWID start increasing.

I11. The OWIDs under phase flip channel and bit-phase flip channel
In this section, we consider the OWIDs of the state in Egs.(6) under phase flip channel and
bit-phase flip channel.

Firstly, under the phase flip channel (3) the state in Egs.(6) will change to the following
state

S(IDab): %(| Rl +1®s- 0, +(1_ p)zclal ® o +(1_ p)ZCZO-Z ® 0, +C;04 ®63)’ (28)

it is easy to see that g(p ab ) is also X state and satisfies conditions in Eqs.(6) and (7). Its
OWID has been calculated by Yao-Kun Wang [8] as follows

8 (o(o)) =] [t V4 (1= p) (o100, Jog [+ 6+ (1= p) (e,¢,)
#[1-c, = (1= p) (ervc, ) Jlog (1o, + fs* + (1= p) (c,vc, ) |
#[Le e, 5 (L p) eyt log[Le 445"+ (1 p) (e.vc, ) |
(e, o (1= p)(e.ve, ) Jlog[t o, s+ (1P (eyve,

_%[(Hs—cs)log(1+s—c3)+(1+s+c3)log(1+s+c3)

+(1-s-c,)log(1-s—c,)+(1-s+c,;)log(1-s+c;) .
(29)
As an example, for s =0.3,c, =0.3,c, =0.4,c, = 0.56, the dynamic behavior of OWID
of the state under the phase flip channel is depicted in Fig.2. We find that the OWID under

the phase flip channel is a monotonic decreasing function, and when P =1, OWID equals
zero.

Next the OWID of the state in Eq.(6) under bit-phase flip channel. Under the phase
flip channel (5) the state in Eq.(6) will change to the following state

S(pab): %(l ®l+1®s-0, +(l— IO)20101 ® o, +C,0, ® 0, +(1_ p)2030'3 ®03)' 50

Similar to the above calculation, the OWID of the state in Eq.(30) is given by
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A*(g(pab)) :%[(1—03 (1- p)z)—\/cl2 +¢c,(1-p) +c2(1-p) +s*(1-p)

Jog(1-cy (1= p)*) = /ef +cic, (1- p)’ +cZ (1- p)* +5° (1- p)’
(1=, (1= p))+et +ee, (1-p) + 0 (1-p)' +5*(1-p)’
tog(1-cy (1 p)*)+/c? +cic, (1- p)’ +c2 (1-p)* +5* (1- p)’
+(L+cy(1- p))—ef +ec, (1 p) +¢E(1-p)' +5° (1-p)
Jog(1+ ¢y (1 p)’)—/cf +cc, (1- p)’ +c2 (1-p)* +5* (1- p)’
+ (140, (1 p))+yet +ec, (1-p) + 0 (1-p)' +52(1-p)’

-Iog(1+ c,(1- p)z)Jr\/cl2 +c,c,(1- p)2 +c5(1- D)4 +s%(1- D)Z}

_%[(1+s—cg)log(1+s—cg)+(1+s+cs)log(1+s+c3)

+(1-s—c;)log(1—-s—c;)+(1—s+c;)log(1—-s+c;)].
(30)

As an example, for s =0.3,¢, =0.3,¢, = 0.4,c, = 0.56, the dynamic behavior of OWID

of the state under the bit-phase flip channel is depicted in Fig.3. We find that the figure of
OWID under the bit-phase flip channel is similar to the figure of OWID under the bit flip
channel, and the OWID of the bit-phase flip channel dwindle with increasing probability

until P = 0.4 then the function of OWID start increasing.

Fig. 4 displays the dynamic behavior of OWID under the phase flip channel(solid line), bit
flip channel(dotted-dash line) and bit-phase flip channel(dashed line) simultaneously. From
Fig.4 we can find that the OWID under the phase flip channel is always positive, and the
OWIDs under the bit flip channel and bit-phase flip channel are always negative. And the
OWID under the phase flip channel is greater than the OWID under the bit-phase channel,
the latter is also greater than the OWID under the bit flip channel.
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FIG.3.0WID under bit-phase flip channel FIG.4.0WID under three channels
IV. CONCLUSION

In this paper, we analytically evaluate the one-way information deficit (OWID) for the X
states with four parameters under three kinds of local nondissipative channels. We find that
the OWID under the phase flip channel is positive, the OWIDs under the bit flip channel
and bit-phase flip channel are negative, and the OWID under the phase flip channel is the
greatest among them, the OWID under the bit flip channel is the smallest among them.
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