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ABSTRACT 

 

In this paper, we analytically evaluate the one-way information deficit (OWID) for the X 

states with four parameters under local nondissipative channels, which includes phase flip 

channel, bit flip channel and bit-phase flip channel. We find that the OWID under the phase 

flip channel is positive, and greater than the OWID under the bit-phase flip channel, the 

latter is also greater than the OWID under the bit flip channel. 

 

Keywords: One-way information deficit; phase flip channel; bit flip channel; bit-phase flip 

channel. 

 

I. INTRODUCTION 
Quantum deficit is one nonclassical correlation besides entanglement and quantum discord, 

which originates in question how to use nonlocal operation to extract work from a 

correlated system coupled to heat bath. Oppenheim et al.[1] defined the work deficit 

 lt WW  , (1) 

where tW  is the information of the whole system and lW  is the localizable 

information.Recently, Ollivier et al.[2] give the definition of the one-way information 

deficit (OWID) by Von Neumann measurement on one side, 
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The state of two-qubit system under local environment can be represented with a 

completely positive trace-preserving map, which can be written in the operator-sum 

representation[3]: 
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where 
  BAkE k

i ,  is the Kraus operator representing the channel A  or B , and
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 . In this paper, we will discuss three Markovian noise channels: phase flip 

channel, bit flip channel and bit-phase flip channel, which are represented with two Kraus 

operators as follows, respectively, 
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where p  is the probability the noise act on the qubit. 

 

Up to now, there are many achievements about one-way deficit and quantum discord, 

which can be seen in their literature[4-8]. In 2013, Yao-Kun Wang et al.[8] analytically 

evaluated the OWID for Bell-diagonal state and X states with four parameters, described 

the dynamic behavior of the OWID under phase flip channel. In this paper, we intend to 

evaluate the OWID of X states with four parameters different channels. 

 

This paper is organized as follows. In section II, we will evaluate the dynamics of OWID 

for X States with four parameters under bit flip channel in detail. In section III, we will 

calculate the dynamics of OWID for X States with four parameters under phase flip 

channel and bit-phase flip channel analogously, and make a comparasion. A brief 

conclusion is given in section IV. 

 

II. The OWID for X States with four parameters under bit flip channel 

 

We consider the following 4-parameter quantum system, 
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where s , 1c , 2c , 3c  are all real numbers and 

 321 ccc  , 310 cs  , (7) 

 

Then under the bit flip channel (4) we have 
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, (8) 

it is easy to see that  ab  is also X state and satisfies conditions in Eqs.(6) and (7). 

The eigenvalues of state in Eq.(8) are 
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Then its entropy is given by 
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Next, we discuss the OWID of the X state  ab  in Eq.(8). Let  1,0,  kkkk  be 

the local measurement for the particle b along the computational base k , then any Von 

Neumann measurement for the particle b can be written as 

 1,0,   kVVB kk , (10) 

for some unitary  2UV  . Since any unitary V can be described as 

 


 yitIV , (11) 

with  321 ,,, yyyyRt 


 and 12

3

2

2

2

1

2  yyyt . After the measurement kB , the 

state 
ab  will be changed to the ensemble  kk p,  with 
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To evaluate k  and kp , we write 
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By the following relations in [7] 
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for 2,1,1,0  kj , we obtain that 
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It can be directly verified that 
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By use of the domain of logarithmic function  ,f  in Eq.(7), we obtain the range 

of   and   as follows, 

 .11,10 31   cc  (25) 
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We can verify that     ,, ff  , the graph of  ,f  is symmetrical with respect 

to the  -axis; moreover, 
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then  ,f  is a monotonic decreasing function. When 3c , by Eqs.(7), (22) and 

(24), we can obtain that s . 

By Eq.(7), the projection of  ,f  on the plane   is a symmetrical rectangle with 

respect to the  -axis, and by use of the monotonicity of  ,f  in the positive 

directionof   and  ,  ,f  can obtain its minimum at the point  3, cs , and the 

minimum of  ,f  is given by 
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By Eqs.(9) and (26), the OWID of the state in Eq.(8) is given by 
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As an example, for 56.0,4.0,3.0,3.0 321  cccs , the dynamic behavior of OWID 
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of the state under the bit flip channel is depicted in Fig.1. We can find that the OWID of the 

bit flip channel dwindle with increasing probability until 4.0p , then the function of 

OWID start increasing. 

 

III. The OWIDs under phase flip channel and bit-phase flip channel 

In this section, we consider the OWIDs of the state in Eqs.(6) under phase flip channel and 

bit-phase flip channel. 

 

Firstly, under the phase flip channel (3) the state in Eqs.(6) will change to the following 

state 
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it is easy to see that ε(ρ ab ) is also X state and satisfies conditions in Eqs.(6) and (7). Its 

OWID has been calculated by Yao-Kun Wang [8] as follows 
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As an example, for 56.0,4.0,3.0,3.0 321  cccs , the dynamic behavior of OWID 

of the state under the phase flip channel is depicted in Fig.2. We find that the OWID under 

the phase flip channel is a monotonic decreasing function, and when 1p , OWID equals 

zero. 

Next the OWID of the state in Eq.(6) under bit-phase flip channel. Under the phase 

flip channel (5) the state in Eq.(6) will change to the following state 
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Similar to the above calculation, the OWID of the state in Eq.(30) is given by 
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(30) 

 

As an example, for 56.0,4.0,3.0,3.0 321  cccs , the dynamic behavior of OWID 

of the state under the bit-phase flip channel is depicted in Fig.3. We find that the figure of 

OWID under the bit-phase flip channel is similar to the figure of OWID under the bit flip 

channel, and the OWID of the bit-phase flip channel dwindle with increasing probability 

until 4.0p , then the function of OWID start increasing. 

 

Fig. 4 displays the dynamic behavior of OWID under the phase flip channel(solid line), bit 

flip channel(dotted-dash line) and bit-phase flip channel(dashed line) simultaneously. From 

Fig.4 we can find that the OWID under the phase flip channel is always positive, and the 

OWIDs under the bit flip channel and bit-phase flip channel are always negative. And the 

OWID under the phase flip channel is greater than the OWID under the bit-phase channel, 

the latter is also greater than the OWID under the bit flip channel. 

  

FIG.1.OWID under bit flip channel FIG.1.OWID under phase flip channel 
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FIG.3.OWID under bit-phase flip channel   FIG.4.OWID under three channels 

 

IV. CONCLUSION 

 

In this paper, we analytically evaluate the one-way information deficit (OWID) for the X 

states with four parameters under three kinds of local nondissipative channels. We find that 

the OWID under the phase flip channel is positive, the OWIDs under the bit flip channel 

and bit-phase flip channel are negative, and the OWID under the phase flip channel is the 

greatest among them, the OWID under the bit flip channel is the smallest among them. 
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