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Abstract: By employing the concept and the properties of frequency measures of infinite double
sequence and the concept of unsaturated solution of partial difference equations, the unsaturated
solutions for the nonlinear partial difference equation with variable coefficients is discussed. Only
using the concept of "frequency measure™ of the level sets of the involved parameter sequences in
equation, the sufficient conditions of the solutions to be unsaturated are presented, thus how
frequent the solutions oscillate is well described.
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1. Introduction

In recent years, many results have been found about the oscillatory and Non-oscillatory
solutions of difference equations. However, the classical concept of oscillation still can not
describe the oscillation of sequences. Therefore, Chuanjun Tian [1] first introduced the concept of
frequency measure of sequence, and described frequent oscillation of sequence. In order to further
improve the frequent oscillation of sequence, Zhigiang Zhu et al. [2] also defined the concept of
frequently positive oscillation and frequently negative oscillation of sequence. At present, there
are some results about the frequent oscillation of solutions of difference equations, see [3-9].

Let Z be the set of integers, Z[K, I]={i € Z|i=k, k+1, L ,I} and
Z[k,0)={i € Z|i=k k+1,L } '

In this paper, we discuss the unsaturated solutions of the following nonlinear partial
difference equation with coefficients of variable sign

— el s
um,n - um—l,n + um,n+1 + pm,n|um+k1,n—ll| Sgn um+k1,n—|1 + qm,n|um+k2,n—lz| Sgn um+k2,n—lz’ (1 )
where m, neZ[0,o), a€[01), @ x); k, k,, |, and I, are all nonnegative

integers, k;>k,>0, I, >1,>0. Moreover, p= { pm'”}m,neZ[O,oo) and Q= {qm'n}m'nd[o’m)

are real double sequences satisfying the condition (*):if p= { pmyn} has negative item, then
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the denominator of A=1 i a positive odd number; similarly, if ¢={d,,,} has negative item,

p-a
then the denominator of 1=% isalsoa positive odd number.
p-a

In the sequel, p:{pm’n} and q:{qm’n} may have negative items. Generally, for

(m,n) e[-1,0) x[-1,0), the double sequence {um'n}(m,n)e[—l,oc)x[—l,oo) is called the solution of

equation (1.1) if it keeps the equation (1.1) holds.
2. Preliminary

Let Z*>=ZxZ, we call an element of Z? to be a lattice. Denote the union, intersection
and difference of two sets A and B to be A+B, A-B and A\B respectively. If

QcZ? | then we denote the potentiall of Q to be [Q ; and denoting
Qmm :{(s,t) eQls<mt< n}.

For any QeZ? and integers m, N, set

X"Q)={(s+mteZ’|(st)eQ}; Y'(Q)={(st+n)eZ?|(s)eQ}.
and XfYy’Q=Ziaz::yXSYtQ, where «a,f,y and 7 are all integers satisfying

a< B,y <t ,then
(s,1) eZ \ XY Qe (s—kt-1)eZ?\Q, a<k<py<l<t (2.1

‘Q(m,n)

exists, then we call

Definition 2.1 Let Q< Z?, if the upper limit limsup,,,

the limit to be the upper frequent measure of Q, denoting z"(€2) . Similarly, if the lower limit

(m,n) . .
liminf ] exists, then we call the limit to be the lower frequent measure of €2,
m,n—oo mn

denoting £4(Q) . If £ (€2) = 1, (Q) then the corresponding limit is called the frequent

measure of €, denoting ()

Definition 2.2 Let u={u_ 1~ be an arbitrary real double sequence, if
MmN} m,n=1

1" (U<0)=0, then we say that u is frequently positive, if 2z (u > 0) =0, then we say that u
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is frequently negative. If u is neither frequently positive nor frequently negative, then we say
that u is frequently oscillatory.

Lemma 21M (@ k u(Q)=1. If Ais an arbitrary subset of €, then
0<u,(A) < (A)<1. Particularly, if B isa finite subset of Q,then x(B)=0.

Lemma 2.2 Let A and B be subsets of Q, then £"(A+B)< u"(A)+ 4 (B). If
Al B=, then

1.(A) + 1,(B) < 11,(A+B) < g1, (A) + 47 (B) < " (A+B) < 1" (A) + 4 (B).
Hence, 1, (A)+ u*(Q\A)=1.
Lemma 2.3 Let A and B be subsets of Q, then

(A - (B) < p/ (A\B) < ' (A) — w.(B);

1,(A)— 17 (B) < 11,(A\B) < 1,(A) — 14,(B).
From Lemma 2.3 we can easily get that
Lemma 2.4% Let A and B be subsets of Q, then

1 (A)+ 7 (B)— 4 (A-B) < " (A+B) < " (A) + 447 (B) — . (A- B);

(A + 47 (B)— g7 (A-B) < s, (A+B) < g1, (A) + 17 (B) — 1. (A- B).
Lemma 2.5 For any subset A of €, we have

(XA <(B-a+D)(z—y+) ' (A);
H (XA S (B-a+D)(r -y +Du. (A).
where «, 3,7 and t are all integers satisfying a < S,y <.

Lemma2.6™ Let A,A,L ,Abe n subsetsof Q,then
w (A1 (A)- (=D (TA),

e (E A< (A)+ 3 (A) - (-0 (TA).

Lemma 2.7™ Let A and B be subsets of Q,if £ (A)+,(B)>1,then A-B isan

infinite set.
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3. Unsaturated Solutions

Let {um’n} be a solution of equation (1.1), if there exists M € Z" such that Uy n >0

for any m,n> M, then we call {um’n}to be an eventually positive solution of equation (1.1).

Similarly, we can define eventually negative solution, eventually non-positive solution, eventually
non-negative solution of equation (1.1). If the solution of equation (1.1) is neither eventually
positive nor eventually negative, then we call that the solution of equation (1.1) is oscillatory.
Obviously, the solution of equation (1.1) is oscillatory if and only if for any subset

{(m, n)eN”:mn> —1} of Q, there exists (m,,n,), (m,,n,) suchthat u,  -u, <O0.

Definition 3.1} Assume that u = {um,n} o is an arbitrary real double sequence, if

(m,n)e

1 Uu>0=we(0,1), then we call that u has unsaturated upper positive part. If

1. (u>0)=we(0,1), then we call that u has unsaturated lower positive part. If

#(U>0)=(u>0)=we(0,1), thenwe call that u has unsaturated positive part.

Similarly, we can define that U has unsaturated negative part. Obviously, if U= {um’n} is

eventually positive or eventually negative, then z"(u>0)=1or £ (u>0)=0. So if the

sequence U :{u } has unsaturated upper positive part, then it must never be eventually

m,n

positive or eventually non-positive, that is to say, U is oscillatory.
We then discuss whether the solution of equation (1.1) has unsaturated upper positive part.

For any double sequence {vi’j}defining on Q, define a level set {(i, j)eQ‘vi’j >C} as
(v>c). Similarly, we can define (v>c), (v<c)and (V<c).
For convenience, we assume Z[—1,00)xZ[-1,00)=Q. For any real double sequence

{um’n}(m)EQ define the following two partial differences:

\4um,n :um+1,n_um,n; \/Zum n_ um,+nT u m
1 1 11
Lemma3.1® Let x,y>0 and p,q>0,if L,1_7 then = x+=y>xPye.
P q p q

Lemma 3.2 Assume that there exists M, >1 and n, >2l, suchthat p, >0,

>0, where (m,n) e Z[m, —1,m, + 2k ]xZ[n, —2I;,n, +1]. If U, is any solution of

m,n =
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equation (1.1), then
Vu,.,20,  Mu, <0,

m,n —

for u,,>0,where (m,n)eZ[m,, m,+k]xZ[n,—l n]; and

VU, ., <0, \Mu,,>0,

m,n —

for u, <0,where (m,n)eZ[my,,my+k]xZ[n,—1,n,].

Proof. If u,, =0, (mn)eZ[m,-1m,+2k]xZ[n,—2l,n;+1] , then from
equation (1.1) we have

Unn =Ungn tUpna + pm,nur(::+k1,n—ll +0n nu£+k2 n-l, = ZUpy1n T Ui
So

Vu,.,20,  Mu, <0,
where (m,n) € Z[my, m, +k,]xZ[n, -1, ny].
Similarly, if u, <0, (m,n)eZ[m;-1,m;+2k ]xZ[n,—2l,n, +1], we have
Vu, .. <0, \ju,, . >0,

m,n

where (m,n) € Z[m,,m, +k ]xZ[n,—1,,n,].

Assume that Hzmin{ﬂ_a ﬂ_a},since a €[0,1), fe(d,©), then &>1. Set

L1 da S La
PP g’ =4 pa dny
m,neZ[-1,00),

1t
then under the assumption (), p”“q”™® makes sense. If p,,>0, q,,>0, then the

condition (*) can be deleted.

Theorem 3.1  Assume that there exists @,, @,, @, and @ €(0,1) such that

w(p<0)=am, £ (q<0)=aw, wul(p<0)-(q<0)]=a;,

b1

1a
w,0p7 g >1) > 4k +D)(I, +Y(@, + @, + 0 — @,).

then any solution of equation (1.1) has unsaturated upper positive part.
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Proof. Let u:{um'n} be any solution of equation (1.1), then «"(u>0) e (w,l).
Otherwise £ (U>0)<w or u (u>0)=1.

If #°(u>0)<w, thenfromLemma 2.2toLemma 2.6 we have

1

HHQ\XL YR <0)+(a<0)+(u>0)]f+ . { X2 Y3 (p < 0) + (g < 0) + (u > O)]f

< {Q\ XY, Y3 [(p<0)+(q<0)+(u>0)]}
+4(k, +1)(I, + D) {[(p <0) +(q < 0)]+ ' (u > 0)}
< {Q\ XY, Y3 [(p<0)+(q<0)+(u>0)]}
+ 40k, +1)(L,+D {2 (p < 0)+ 1’ (q < 0)+ &' (> 0) - . [(p < 0) - (A < O)]}

< {Q\ XY, Y3 (p < 0) +(q < 0) + (u> 0)]f +4(k, +D)(}, + (@, + @, + 0 )

it
p-a

(VX Y (P <0)+(a <0)+ (u> O+ (0707 >1).

then from Lemma 2.7 we know that the intersection

7L te
{Q\ XL, Y2 (p<0) +(q<0)+(u> )]} (9p"“q"* >1)

is an infinite subset of €. So according to Lemma 3.2, there exists m, >1, n,>2l, such that

2 R

P o Amen > 1, (3.2)

e =20, 0,,20, u, <0,(m,n)eZ[m,-1m,+2k]xZ[n,-2l,n, +1]. (3.3)
From (3.2) and Lemma 3.2 again, we have

VU,,,<0, Mu,, >0, (m,n)eZ[m,,m,+k]xZ[n;—1,n].

Therefore U, ., =U

>
my.np—ly = UmOr”o >0.

It follows from equation (1.1) and Lemma 3.2 that
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0= umo—l,nO + l"Imo,n0+1 m0 Ny pm0 No m0+k1,n0—l1 “ Sgn l"ImoJrkl,no—Il
+qmn um+k ny—I ﬂsgnum+k ny—I
oMo o +K2.Mo =12 o +K2.Mp =12
Sl"lm—ln +umn+l mn (pmn my+Kky ,ng—I a+qmnum+kn—l ﬂ)
o—L.MNo oMo oMo oMo o +K2.Np =12 oMo o +K2.No =12
p1 da
< umo—l,nO + umo,n0+1 - l"Imo,no - pmo,nOQmO,n0 my+k,,ng—l,
1 l-a
< umofl,nO + umo,no+1 U pm0 r(i)qmo Ny My ,Ng
1 l-a
< _umo,no pmO rﬁxoqm0 Ng ~'mg Ny

p1 la

=[-1+0ps+ qr{fo

p1 170(

Since Uy , < <0,then t9p q <1,which contradicts (3.2).

Next, assume £ (u>0)=1, according to Lemma 2.2 we have s (U<0)=0. From

Lemma 2.2 to Lemma 2.6, we have

1= {Q\ XY, Y (p<0)+(q<0)+ (U< )]} + 2, { X, Y2 [(p < 0) + (q < 0) + (u < 0)]f

< {Q\ XY, Y3 [(p<0)+(q<0)+(u<0)]}
+4(k, + (1, + D [(p < 0) +(q < 0) + (u<0)]
Sﬂ*{Q\ x}Zk 2 [(p<0)+(g<0)+(u <0)]}

+4(k, +1)(1,+D {4 (p < 0)+ 4" (@< 0) + 1, (u<0) - w[(p <0)-(q < O)]}

< {Q\ XY, Y2 (P <0) +(q < 0)+ (U< 0)]}+4(k +1)(, +1)(@; + 0, - )

it
p-a

< i (VXL YB[(p<0)+ (G <0) + (U< Ol + 1. (0p” "7 > 1),

So according to Lemma 2.7 we know that the intersection
f1 l-a

£\ X5, Y3 [(p<0)+(q<0)+(u<O)]}(Op”“q” >1)

is an infinite subset of €. Similar to the above discussion, " (u > 0) =1does not hold, so the

conclusion is correct.
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Theorem 3.2 Assume that there exist constants @, @, ,®, and @ € (0,1), such that

p-1

e
©(p<0)=am, 1 ([@<0)=aw, w@p" 9" >)=w,

L

Lo
1[(p<0)-(q<0)-(OpP=gie <1)]> LT L@ B 1

2 8k, +1)(I, +1)’

then any solution of equation (1.1) has unsaturated upper positive part.

Proof. Toprove 4 (u>0)e(w,1). Similar to the proof of Theorem 3.1, we only need
toprove £ (U>0)<w and & (u>0)=1.

Firstly, assume 4" (u>0) < @, then form Lemma 2.2 to Lemma 2.6 we have

p-1 1-a

QXL Y (p<0)+(q<0)+(9p"q" <D +(u>0)]}

ﬂ

=1-u{X%, Y2 [(p<0)+(q<0)+(Op"™ “qr <1y 4 (u> O}
Bl 1«
>1-4(k +1)(l, +D{[(p<0) +(q < 0) +(Op” “q"* <1)]+ 4’ (u>0)}
A1 la
<1-4(k +1)(l, +D{u (p <0) + 4°(q < 0) + 4,(9p"“q" <1)+ 4’ (u> 0)
p-1 17

~2u[(p<0)-(q<0)-(9p”“a”* <1)I}

>0

p1 Lo
From Lemma 2.7 we know that Q\ X%, Y3:[(p <0)+(q < 0)+(@p” 0" <1)+(u >0)]

is an infinite set. So according to Lemma 3.2, there exist m, =1, n, > 2l; such that

1 ta
0P o Oy o > 1,

Prn=0, d,,20, U, <0,(mn)eZ[m,-1,m,+2k]xZ[n,-2l,n, +1].
Similar to Theorem 3.1, we get the contradiction. So #" (U >0) <@ does not hold, then
1 (u>0)#1 ie, x4 (u>0)e(w1). Hence the theorem is proved.

Theorem 3.3 Assume that there exist constants @, @, , @, , ®, and @ € (0,1) such that
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Satisfying 4(k, +1)(I, +)(@, + @, + @+ @, — 2w,) <1, then any solution of equation (1.1) has

unsaturated upper positive part.
Proof. Similar to the proof of Theorem 3.2.

Example. In equation (1.1), set a:%, ﬂ:g, Pon=3" O =1 k =3, k, =2,

L=2 I,=1 0= min{&,;a}, then the equation should be

B-1"1-«a
um,n = um+l,n + um,n-*—l + 3” um+3,n—2 ‘0! Sgn um-¢—3,n—2 + ‘um+2,n—1 "B Sgn um+2,n—1'
Obviously,
p1 la
. (Op" 9" >N =1 (p<O0Fu d< &)
A1 la
#((p<0)-(q<0) = (0p” 9" >1)=1.
p-1 1l-a

Moreover, ,((p<0)-(q<0)-(@p”“q’“ <1))=0.

Then from Theorems 3.2 and 3.3, any solution of equation (1.1) has unsaturated upper
positive part.
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