COMMON FIXED POINT THEOREM IN b_{2}-METRIC SPACES

Jinxing Cui ${ }^{1}$ \& Linan Zhong ${ }^{1 *}$
(Department of Mathematics, Yanbian University, Yanji, 133002, P.R. China)
*Corresponding author: Linan Zhong. Email: zhonglinan2000@126.com.

Abstract

We establish a unique common fixed point theorem for two pair of weekly compatible maps satisfying a contractive condition in a complete b_{2}-metric space. When the following have been proved, I recommend it to be published, which extends and generalizes some known results in metric space to b_{2}-metric space.

Keywords: Common fixed point; complete b_{2}-metric space; weekly compatible maps.

1 Introduction

Fixed point theory has been studied by many authors for its useful function in a variety of areas. In 1992, a polish mathematician, Banach, proved a theorem known as Banach contraction principle [1]. This principle presents useful results in nonlinear analysis, functional analysis and topology. The concept of weakly commuting has been introduced by Sesssa S [2]. Years later, Gerald Jungck [3] introduced weakly compatible mappings ,which are more generalized commuting mappings.

In this paper, we present fixed point results for two pair of mappings satisfying a contractive type condition by using the concept of weakly compatible mappings in a complete generalized metric space, which is called b_{2}-metric space [5] and this space was generalized from both 2 -metric space [6-8] and b-metric space [9-10].

2 Preliminaries

The following definitions will be needed to present before giving our results.
Definition 2.1 [2] Let f and g be two self-maps on a set X. Maps f and g are said to be commuting if $f g x=g f x$ for all $x \in X$.
Definition 2.2 [4] Let f and g be two self-maps on a set X. If $f x=g x$, for some x of X, then x is called coincidence point of f and g.
Definition 2.3 [4] Let f and g be two self-maps defined on a set X. Then f and g are said to be weakly compatible if they commute at coincidence points. That is, if $f x=g x$ for some $x \in X$, then $f g x=g f x$.
Lemma 2.4 [4] Let f and g be weakly compatible self mappings of a set X. If f and g have a unique point of coincidence, that is, $\omega=f x=g x$, then ω is the unique common fixed point of f and g.
Definition 2.5 [5] Let X be a nonempty set, $s \geq 1$ be a real number and let $d: X \times X \times X \rightarrow R$ be a map satisfying the following conditions:

1. For every pair of distinct points $x, y \in X$, there exists a point $z \in X$ such that $d(x, y, z) \neq 0$.
2. If at least two of three points x, y, z are the same, then $d(x, y, z)=0$,
3. The symmetry:
$d(x, y, z)=d(x, z, y)=d(y, x, z)=d(y, z, x)=d(z, x, y)=d(z, x, y)$ for all
$x, y, z \in X$.
4. The rectangle inequality:
$d(x, y, z) \leq s[d(x, y, a)+d(y, z, a)+d(z, x, a)]$, for all $x, y, z, a \in X$.
Then d is called a b_{2} metric on X and (X, d) is called a b_{2} metric space with parameter s. Obviously, for $s=1, b_{2}$ metric reduces to 2-metric.

Definition 2.6 [5] Let $\left\{x_{n}\right\}$ be a sequence in a b_{2} metric space (X, d).
(1). A sequence $\left\{x_{n}\right\}$ is said to be b_{2}-convergent to $x \in X$, written as $\lim _{n \rightarrow \infty} x_{n}=x$, if all $a \in X \quad \lim _{n \rightarrow \infty} d\left(x_{n}, x, a\right)=0$.
(2). $\left\{x_{n}\right\}$ is Cauchy sequence if and only if $d\left(x_{n}, x_{m}, a\right) \rightarrow 0$, when $n, m \rightarrow \infty$. for all $a \in X$.
(3). (X, d) is said to be -complete if every b_{2}-Cauchy sequence is a b_{2}-convergent sequence.

Definition 2.7 [5] Let (X, d) and (X^{\prime}, d^{\prime}) be two b_{2}-metric spaces and let $f: X \rightarrow X^{\prime}$ be a mapping. Then f is said to be b_{2}-continuous, at a point $z \in X$ if for a given $\varepsilon>0$, there exists $\delta>0$ such that $x \in X$ and $d(z, x, a)<\delta$ for all $a \in X$ imply that $d^{\prime}(f z, f x, a)<\varepsilon$. The mapping f is b_{2}-continuous on X if it is b_{2}-continuous at all $z \in X$.

Definition 2.8 [5] Let (X, d) and $\left(X^{\prime}, d^{\prime}\right)$ be two b_{2}-metric spaces. Then a mapping $f: X \rightarrow X^{\prime}$ is b_{2}-continuous at a point $x \in X^{\prime}$ if and only if it is b_{2}-sequentially continuous at x; that is, whenever $\left\{x_{n}\right\}$ is b_{2}-convergent to $x,\left\{f x_{n}\right\}$ is b_{2}-convergent to $f(x)$.

Definition 2.9 [6-8] Let X be an nonempty set and let $d: X \times X \times X \rightarrow R$ be a map satisfying the following conditions:

1. For every pair of distinct points $x, y \in X$, there exists a point $z \in X$ such that $d(x, y, z) \neq 0$.
2. If at least two of three points x, y, z are the same, then $d(x, y, z)=0$,
3. The symmetry:
$d(x, y, z)=d(x, z, y)=d(y, x, z)=d(y, z, x)=d(z, x, y)=d(z, x, y)$ for all
$x, y, z \in X$.
4. The rectangle inequality:
$d(x, y, z) \leq d(x, y, a)+d(y, z, a)+d(z, x, a)$ for all $x, y, z, a \in X$.
Then d is called a 2 metric on X and (X, d) is called a 2 metric space.
Definition 2.10 [9-10] Let X be a nonempty set and $s \geq 1$ be a given real number. A function $d: X \times X \rightarrow R^{+}$is a b metric on X if for all $x, y, z \in X$, the following conditions hold:
5. $d(x, y)=0$ if and only if $x=y$.
6. $d(x, y)=d(y, x)$.
7. $d(x, y) \leq s[d(x, y)+d(y, z)]$.

In this case, the pair (X, d) is called a b metric space.

3 Main results

Theorem 3.1. Let (X, d) be a complete b_{2}-metric space, and $P, Q, S, T: X \rightarrow X$ are four mappings, satisfying the following conditions:
(a). $T(X) \subseteq P(X)$ and $S(X) \subseteq Q(X)$; Both P and Q are surjections.
(b). $d(S x, T y, a) \leq c(\lambda(x, y, a))$.

Where $\quad \lambda(x, y, a)=\max \{d(P x, Q x, a), d(P x, S x, a), d(Q x, T y, a)\}$ for all $\quad x, y \in X \quad$ and $0 \leq c<\frac{1}{s}$.
(c) . (S, P) and (T, Q) are weakly compatible.

Then S, P, Q and T have a unique common fixed point in X.
Proof In this part, we will show that $\lim _{n \rightarrow} d\left(y_{n+1}, y_{n}, a\right)=0$.
Let x_{0} be an arbitrary point in X and construct two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\begin{aligned}
& y_{n}=Q x_{n+1}=S x_{n}, \\
& y_{n+1}=P x_{n+2}=T x_{n+1} .
\end{aligned}
$$

From (b), we have

$$
\begin{equation*}
d\left(y_{n}, y_{n+1}, a\right)=d\left(S x_{n}, T x_{n+1}, a\right) \leq c \lambda\left(x_{n}, x_{n+1}, a\right) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \lambda\left(x_{n}, x_{n+1}, a\right) \\
& \quad=\max \left\{d\left(P x_{n}, Q x_{n+1}, a\right), d\left(P x_{n}, S x_{n}, a\right), d\left(Q x_{n+1}, T x_{n+1}, a\right)\right\} \\
& =\max \left\{d\left(T x_{n-1}, S x_{n}, a\right), d\left(T x_{n-1}, S x_{n}, a\right), d\left(S x_{n}, T x_{n+1}, a\right)\right\} \\
& \quad=\max \left\{d\left(T x_{n-1}, S x_{n}, a\right), d\left(S x_{n}, T x_{n+1}, a\right)\right\} \\
& \quad=\max \left\{d\left(y_{n-1}, y_{n}, a\right), d\left(y_{n}, y_{n+1}, a\right)\right\} .
\end{aligned}
$$

Assume $\quad \lambda\left(x_{n}, x_{n+1}, a\right)=d\left(y_{n}, y_{n+1}, a\right)$ and from (3.1) we have,

$$
d\left(y_{n}, y_{n+1}, a\right)<c d\left(y_{n}, y_{n+1}, a\right)
$$

which is impossible. Then we get $\lambda\left(x_{n}, x_{n+1}, a\right)=d\left(y_{n-1}, y_{n}, a\right)$ also from (3.1) we get

$$
\begin{equation*}
d\left(y_{n}, y_{n+1}, a\right)<c d\left(y_{n-1}, y_{n}, a\right) \tag{3.2}
\end{equation*}
$$

This implies that the sequence $\left\{d\left(y_{n}, y_{n+1}, a\right)\right\}$ is decreasing and it must converge to $r \geq 0$. Therefore as $n \rightarrow \infty$, from (3.2) we get $r \leq c r$, this gives us that $r=0$, then the result is obtained:

$$
\begin{equation*}
\operatorname{lin}_{n \rightarrow \infty} \operatorname{ml}\left(y_{n+1}, y_{n}, a\right)=0 \tag{3.3}
\end{equation*}
$$

Then we show that $d\left(y_{i}, y_{j}, y_{k}\right)=0$
From part 2 of Definition 2.5, we have $d\left(x_{m}, x_{m}, x_{m-1}\right)=0$. Since $\left\{d\left(x_{n}, x_{n+1}, a\right)\right\}$ is decreasing, we get $d\left(x_{n}, x_{n+1}, a\right)=0$ from the assumption that $d\left(x_{n-1}, x_{n}, a\right)=0$, then it is easy to get

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}, x_{m}\right)=0, \quad \text { for all } n+1 \geq m \tag{3.4}
\end{equation*}
$$

For $0 \leq n+1<m$, we get $m-1 \geq n+1$ and that is $m-2 \geq n$, from (3.4)

$$
\begin{equation*}
d\left(x_{m-1}, x_{m}, x_{n+1}\right)=d\left(x_{m-1}, x_{m}, x_{n}\right)=0 \tag{3.5}
\end{equation*}
$$

For (3.5) and triangular inequality, we have

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}, x_{m}\right) \leq & s d\left(x_{n}, x_{n+1}, x_{m-1}\right)+\operatorname{sd}\left(x_{n+1}, x_{m}, x_{m-1}\right) \\
& +d\left(x_{m}, x_{n}, x_{m-1}\right) \\
= & \operatorname{sd}\left(x_{n}, x_{n+1}, x_{m-1}\right) .
\end{aligned}
$$

And since $d\left(x_{n}, x_{n+1}, x_{n+1}\right)=0$, and from the inequality above,

$$
\begin{equation*}
d\left(x_{n+1}, x_{n}, x_{m}\right) \leq s^{m-n-1} d\left(x_{n+1}, x_{n+1}, x_{n}\right)=0, \text { for all } 0 \leq n+1 \leq m . \tag{3.6}
\end{equation*}
$$

Now for all $i, j, k \in N$, now we consider the condition of $j>i$, from the above equation

$$
\begin{equation*}
d\left(x_{j-1}, x_{j}, x_{i}\right)=d\left(x_{k}, x_{j-1}, x_{j}\right)=0 \tag{3.7}
\end{equation*}
$$

From (3.7) and triangular inequality, therefore

$$
\begin{aligned}
d\left(x_{i}, x_{k}, x_{j}\right) & \leq s\left[d\left(x_{i}, x_{j}, x_{j-1}\right)+d\left(x_{j}, x_{k-1}, x_{k}\right)+d\left(x_{i}, x_{j-1}, x_{k}\right)\right] \\
& \leq \Lambda \\
& \leq s^{j-1} d\left(x_{i}, x_{k}, x_{i}\right) \\
& =0
\end{aligned}
$$

In conclusion, the result below is gotten

$$
\begin{equation*}
d\left(x_{j}, x_{k}, x_{i}\right)=0, \text { for all } i, j, k \in N . \tag{3.8}
\end{equation*}
$$

Now we prove that $\left\{y_{n}\right\}$ is a Cauchy sequence.
Suppose to the contrary, that is, $\left\{y_{n}\right\}$ is not a Cauchy sequence. Then there exists $\varepsilon>0$ for which we can find two subsequences $\left\{n_{i}\right\}$ and $\left\{m_{i}\right\}$ such that $i<m_{i}<n_{i}$ and

$$
\begin{equation*}
d\left(y_{m_{i}}, y_{n_{i}}, a\right) \geq \varepsilon \text { and } d\left(y_{m_{i}}, y_{n_{i}-1}, a\right)<\varepsilon . \tag{3.9}
\end{equation*}
$$

From the part 4 of Definition 2.5 and (3.8), we get

$$
\begin{aligned}
d\left(y_{m_{i}}, y_{n_{i}}, a\right) & \leq s\left[d\left(y_{m_{i}}, y_{m_{i}+1}, a\right)+d\left(y_{m_{i}+1}, y_{n_{i}}, a\right)+d\left(y_{m_{i}}, y_{n_{i}}, y_{m_{i}+1}\right)\right] \\
& \leq s\left[d\left(y_{m_{i}}, y_{m_{i}+1}, a\right)+d\left(y_{m_{i}+1}, y_{n_{i}}, a\right)\right] .
\end{aligned}
$$

Taking $i \rightarrow \infty$, from (3.3) and (3.9) we have

$$
\begin{equation*}
\frac{\varepsilon}{s} \leq \operatorname{lin}_{n \rightarrow \infty} \operatorname{md}\left(y_{m_{i}+1}, y_{n_{i}}, a\right) \tag{3.10}
\end{equation*}
$$

From (b), we get

$$
\begin{equation*}
d\left(y_{n_{i}}, y_{m_{i}+1}, a\right)=d\left(S x_{n_{i}}, T x_{m_{i}+1}, a\right) \leq c \lambda\left(x_{n_{i}}, y_{m_{i}+1}, a\right) . \tag{3.11}
\end{equation*}
$$

Since

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \lambda\left(x_{n_{i}}, x_{m_{i}+1}, a\right)= & \max \left\{\lim _{n \rightarrow \infty} d\left(P x_{n_{i}}, Q x_{m_{i}+1}, a\right), \lim _{n \rightarrow \infty} d\left(P x_{n_{i}}, S x_{m_{i}+1}, a\right),\right. \\
& \operatorname{linnl}_{n \rightarrow \infty}\left(Q x_{m_{i}+1}, T x_{m_{i}+1}, a\right) \\
= & \max \left\{\lim _{n \rightarrow \infty} d\left(y_{n_{i}-1}, y_{m_{i}}, a\right), \lim _{n \rightarrow \infty} d\left(y_{n_{i}-1}, y_{n_{i}}, a\right), \lim _{n \rightarrow \infty} d\left(y_{m_{i}+1}, y_{m_{i}}, a\right)\right\} \\
= & \operatorname{limnl}_{n \rightarrow \infty}\left(y_{n_{i}-1}, y_{m_{i}}, a\right) .
\end{aligned}
$$

And by (3.11) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(y_{n_{i}}, y_{m_{i}+1}, a\right) \leq \lim _{n \rightarrow \infty} c\left(d\left(y_{n_{i}-1}, y_{m_{i}}, a\right)\right) \tag{3.12}
\end{equation*}
$$

Again taking $i \rightarrow \infty$ by (3.9) and (3.12) we get

$$
\begin{equation*}
\frac{\varepsilon}{s} \leq \operatorname{limal}_{n \rightarrow \infty}\left(y_{m_{i}+1}, y_{n_{i}}, a\right) \leq c \varepsilon<\frac{\varepsilon}{s} \tag{3.13}
\end{equation*}
$$

Which is a contraction. Therefore $\left\{y_{n}\right\}$ is a Cauchy sequence in X.
Since X is complete, there exists a point $z \in X$ such that $n \rightarrow \infty,\left\{y_{n}\right\} \rightarrow z$.
Thus $\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} Q x_{n+1}=z$ and $\lim _{n \rightarrow \infty} T x_{n+1}=\lim _{n \rightarrow \infty} P x_{n+2}=z$.
That is $\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} Q x_{n+1}=\lim _{n \rightarrow \infty} T x_{n+1}=\lim _{n \rightarrow \infty} P x_{n+2}=z$. From $T(X) \subseteq P(X)$ and P is a surjection, there exists a point u in X such that $z=P u$, then from (b), we get

$$
\begin{aligned}
d(S u, z, a) & \leq s\left[d\left(S u, T x_{n+1}, a\right)+d\left(T x_{n+1}, z, a\right)+d\left(T x_{n+1}, S u, z\right)\right] \\
& \leq s\left[c \lambda\left(u, x_{n+1}, a\right)+d\left(T x_{n+1}, z, a\right)+d\left(T x_{n+1}, S u, a\right)\right],
\end{aligned}
$$

where

$$
\begin{aligned}
\lambda\left(u, x_{n+1}, a\right) & =\max \left\{d\left(P u, Q x_{n+1}, a\right), d(P u, S u, a), d\left(Q x_{n+1}, T x_{n+1}, a\right)\right\} \\
& =\max \left\{d\left(z, S x_{n}, a\right), d(z, S u, a), d\left(S x_{n}, T x_{n+1}, a\right)\right\} .
\end{aligned}
$$

We take $n \rightarrow \infty$, we get

$$
\lambda\left(u, x_{n+1}, a\right)=\max \{d(z, z, a), d(z, S u, a), d(z, z, a)\}=d(z, S u, a) .
$$

Therefore as $n \rightarrow \infty, d(S u, z, a) \leq s c(d(z, S u, a))$.
Assume there exists $a \in X$ such that $d(S u, z, a)>0$ then we get $\frac{1}{s} \leq c$ from the above inequality, which is contraction with $c<\frac{1}{S}$. Thus $S u=z$, furthermore $P u=S u=z$. So P and S have a coincidence point u in X. Since P and S are weakly compatible, $S P u=P S u$ that is $S z=P z$.

From $S(X) \subseteq Q(X)$ and Q is a surjection, there exists a point v in X such that $z=Q v$, then from (b), we get

$$
d(T v, z, a) \leq c \lambda(u, v, a)
$$

where

$$
\begin{aligned}
\lambda(u, v, a) & =\max \{d(P u, Q v, a), d(P u, S u, a), d(Q v, T v, a)\} \\
& =\max \{d(z, z, a), d(z, z, a), d(z, T v, a)\} \\
& =d(z, T v, a)
\end{aligned}
$$

Then

$$
d(z, T v, a) \leq c d(z, T v, a)
$$

Assume $d(z, T v, a)>0$, then we have $1 \leq c$, which is contraction with $c<\frac{1}{s}<1$. Therefore $T v=Q v=z$. So Q and T have a coincidence point v in X. Since Q and T are weakly compatible, $Q T v=T Q v$ that is $Q z=T z$.

Now we prove that z is a fixed point of S. By (b), we get

$$
d(S z, z, a)=d(S z, T v, a) \leq c \lambda(z, v, a),
$$

where

$$
\begin{aligned}
\lambda(z, v, a) & =\max \{d(P z, Q v, a), d(P z, S z, a), d(Q v, T v, a)\} \\
& =\max \{d(S z, z, a), d(S z, S z, a), d(z, z, a)\} \\
& =d(S z, z, a)
\end{aligned}
$$

then we get

$$
d(S z, z, a) \leq c d(S z, z, a)
$$

Assume $d(z, T v, a)>0$, we get $1 \leq c$, which is a contraction. Thus $S z=P z=z$.
Now we prove that z is a fixed point of T. Then from (b), we get

$$
d(T z, z, a)=d(S z, T z, a) \leq c \lambda(z, z, a),
$$

where

$$
\begin{aligned}
\lambda(z, z, a) & =\max \{d(P z, Q z, a), d(P z, S z, a), d(Q z, T z, a)\} \\
& =\max \{d(T z, z, a), d(T z, T z, a), d(z, z, a)\} \\
& =d(T z, z, a) .
\end{aligned}
$$

then we get

$$
d(z, T z, a) \leq c d(z, T v, a)
$$

Assume $d(z, T z, a)>0$, we have $1 \leq c$, which is a contraction. Thus $T z=Q z=z$.
So we get z is a common fixed point of P, Q, S, T. From (b), we get

$$
d(z, \omega, a)=d(S z, T \omega, a) \leq c \lambda d(z, \omega, a)
$$

where

$$
\begin{aligned}
\lambda(z, \omega, a) & =\max \{d(P z, Q \omega, a), d(P z, S z, a), d(Q \omega, T \omega, a)\} \\
& =\max \{d(z, \omega, a), d(z, z, a), d(\omega, \omega, a)\} \\
& =d(z, \omega, a) .
\end{aligned}
$$

thus $\quad d(z, \omega, a) \leq c \lambda d(z, \omega, a)$.
Suppose that $d(z, \omega, a)>0$, we get $1 \leq c$, which is a contraction. Thus $z=\omega$, then P, Q, S, T have a unique common fixed point $z \in X$.

REFERENCES

[1] Banach, S.: Sur les opérations dans les ensembles abtraits et leur applications aux équations intégrales. Fundam. Math. 3,133-181(1992)
[2] S.Sessa: On a weak Commutativity Condition of Mappings in a Fixed Point Considerations. Publ. Inst Math. Debre. 32, 149-153(1982).
[3] G. Jungck:Compatible mappings and common fixed points. Internet. I. Math and Math. Sci. v 9, 771-779(1986)
[4] G. Jungck, B.E. Rhoades: Fixed Point for set valued Functions Without Contunuty. Indian J. Pure Appl. Math. 29(3), 227-238(1998).
[5] Mustafa. Z., Parvaech, V.:Roshan, J.R., Kadelburg, A.: b_{2}-metric spaces and somefixed point theorems. Fixed Point Theory Appl. 144(2014)
[6] Piao Y J.: Unique common fixed point for a family of self-maps with same type contractive condition in 2-metric spaces[J]. Analysis in Theory and Applications. 24(4),316-320(2008)
[7] Piao Y J.: Unique common fixed point fir a family of mappings with ϕ-contractive type in 2-metric spaces[J]. Applied Mathematics. 3(1),73-77(2012)
[8] Piao Y J., Jin Y F.: New unique common fixed results for four mappings with ϕ-contractive type in 2-metric spaces[J]. Applied Mathematics.3(7),734-737(2012)
[9] Czerwik, S.:Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5-11(1993)
[10] Czerwik, S.: Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. FiS. Univ. Modena. 46,263-276(1998)

