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ABSTRACT 

 

The objective of this paper is to review some known elementary and compound events. We 

will review the sampling with and without replacement cases in order to see the effects on the 

probability. This will also change the weighting process in survey sampling. Finally, we will 

discuss two useful compound events, the Banach Matchbox Problem and the Poisson 

Negative Binomial Distribution in compound Events. These two distributions have been 

found useful in risk analysis. All theories are accompanied with examples to explain the 

meaning of these theories. 
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1.INTRODUCTION 

 

An event A is said to be a compound event, if it can be represented as the sum of two events 

that are both different from A: A.C A,B ,CBA   Events that do not permit any such 

representation are said to be elementary events. There are some interesting relationships 

between elementary and compound events. We provide a short list, but no proven of these 

facts: 1) It can be shown that the product of two distinct elementary events is 0; 2) We know 

that for every compound event B, there exists an elementary event A such that BA  holds; 

3) In an algebra consisting of a finite number of events,every event can be represented as a 

sum of elementary events. This representation is unique except for the order of the events. 4) 

The number of events of a finite algebra of events is necessarily a power of 2. Instead of 

proving these facts we will discuss some of generally useful events that may relate to other 

areas  study. The events with or without replacement could change the probability, and thus 

effect the weighing process in a sample survey. In section 3, we give three classical examples 

that have been found useful in risk analysis. In general, it is not easy to find their 

probabilities. In example 3.1 and 3.2, we study the Banach Matchbox Problem and more 

complex situation, first empty but not the first one found empty. These situations can be 

extended to real life applications.  In example 3.3, we had applied the Poisson distribution 

compound with Negative Binomial Distribution. The reason for using this distribution is 

proved mathematically, and not assumed. We give this proven fact in our concluding 

remarks.     

 

2. Elementary Events  

Draw an ordered sample of size k, nk0  , without replacement from a population of size n. 

The total number 
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of possible samples denoted by )k(n , is 

     )1kn).....(2n)(1n(nn )k(   

)k(n  is also known as the permutation of n objects taken k 

at a time. By a permutation of n objects we mean any arrangement of these n objects. This 

implies that the total number of permutations of n objects is ! nn )n(  . However, if 

we concern the sampling with replacement, then the total number of samples of size k with 

replacement from a population of size n is 
kn . We apply these methods to the following 

examples. 

Example 2.1 An elevator starts with 10 passengers and stops at 15 floors. Find the probability 

that no two passengers leave at the same floor.  

Let A: event that no two passengers get off on the same floor. Then the number of favorable 

event A is  

         6*7*8*9*10*11*12*13*14*15 * 

and sample space number 
1015 . Therefore the probability of event A is 

 

       0189.0
15

6*7*8*9*10*11*12*13*14*15

)(#

)A(#
)A(P

10



 

 

Example 2.2 Suppose in a population of r elements, a random sample of size n is taken. Find 

the probability that none of k prescribed elements is in the sample if the method used is :(a) 

sampling without replacement; (b) sampling with replacement.  

a. Given that the population size is r, the sample size is n, and the sampling is done without 

replacement. So the number of sample space is  

   )1nr).....(1r(rr)(# )n(       

Define A: the event that none of k prescribed objects is in the sample. If the k prescribed 

objects are excluded from the sample, then the sample of n objects must be selected from the 

remaining (r-k) objects. This can be done )n()kr(   ways. Thus, the number of favored 

events  )n()kr(A   and 

 
)n(

)n(

r

)kr(
)A(P


 . 

b. In this case, the sampling is done with replacement and the number of sample space 
nr)(#  . Define A event the same as part (a). We have the number of favored event A: 

n)kr()A(#  . So that n

n

n

)
n

k
1(

r

)kr(
)A(P 


 . 

Example 2.3: Suppose n balls are distributed into n boxes so that all of the 
nn  possible 

arrangements are equally likely. Compute the probability that only box 1 is empty. 

The probability space in this case consists of 
nn  equally likely points. Let A be the event that 

only box 1 is empty. This can happen only if the n balls are in the remaining  

n-1 boxes in such a manner that no box is empty. Thus, exactly one of these (n-1) boxes must 

have two balls, and the remaining (n-2) boxes must have exactly one ball each. Let jB  be the 

event that box j, j=2,3,…n has two balls, box 1 has no balls, and the remaining (n-2) boxes 
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have exactly one ball each. Then the jB  are disjoint events and U
n

2j
jBA



 . To compute 

)B(P j  observe that the two balls put in box j can be chosen from n balls in 








2

n
 ways. The 

(n-2) balls in the remaining (n-2) boxes can be rearranged in (n-2) ways. Thus the number of 

distinct ways that we can put two balls into box j, no ball in box 1, and exactly one ball in 

each of the remaining boxes is )!2n(
2

n









 so 

nj
n

)!2n(
2

n

)B(P





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



  

and consequently 

    
nn

n

2j
j

n

)!1n(
2

n

n

)!2n(
2

n
)1n(

)B(P)A(P





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









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





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n     5     10     15    20 

P(A)   0768.0    0016.0    
410x2.0 

   610x22.0   

 

Based on above tabulation, we can see that as the sample size increase from 5 to 20 and the 

chance of event A occur quickly drop to zero. 

 

3. Define the Random Variables 

 Instead of defining the events, we sometime prefer to    

 define the random variables in a sample space. In this 

 section we introduce the discrete random variable, 

 namely the negative binomial distribution. In a repeated 

 independent Bernoulli trial with probability p for 

 success until obtaining the thr  success, we define the 

 random variable x : number of the trials until the thr   

 success occurs. Suppose the thr  success occur at the  

 
thr)(k   trial, k=0,1,2,…. This means that there are k F’s 

 until the thr  success. There are exactly k F’s in  

 (k+r-1) trials follows by a success at the 
thr)(k    

  trials, where these events occur with probability 

   ppq
k

1-rk 1rk 







 
  therefore 

krqp
k
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otherwise                                   0                
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 The above Negative Binomial Distribution is also known as 

 the Pascal Distribution. We found it very helpful in 

 finding some difficult probabilities. The next two  

 examples will demonstrate this. 
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Example 3.1 (Banach’s Matchbox Problem)  

 A mathematician carries two matchboxes, one in each of the two pockets of his coat. 

Whenever he wishes to light a cigarette, he chooses a pocket at random and uses a match  

from the box in that pocket. Suppose each box contains N matches to begin with. Find the 

probability that there are k matches in the other pocket when he finds that the box in one 

pocket is empty. (Remember to differentiate between empty box is different from finds empty 

box) Define A : the event that one of the matchboxes is found empty when the other box 

contains exactly k matches. Let :)A(A LR  the event that the right (left) pocket is found to 

contain the empty match box while the left (right) pocket contains a matchbox with exactly k 

matches. Then  

LR AAA   and since )2P(AP(A)    so),A(P)A(P RLR  , so let us  

 compute )A(P R . We may also assume the chance to select the right pocket or left pocket is 

the same. Then p=0.5 for success. Now, finding, for the first time, the box in the right pocket 

empty means a (N+1) chance for success. Exactly k matches left in the left pocket means that 

the  left pocket has been selected (N-k)times. So we have had (N-k) failures. Thus, if f(r,k,p) 

denotes the negative binomial density, we have )
2

1
,kN,1N(f)A(P R   and 

     
kN1N )

2

1
()

2

1
(

k-N

k-2N
2)

2

1
,kN,1N(f2)A(P 









  

To show some sample example of computing P(A), we select some N, k and calculate their 

probabilities follows:   

N   10   10   15    15   20    20  

k    5   8    7    11   12     17 

P(A) 0.0916 0.0161 0.0584 0.0074  0.0116  0.0002 

 

 

Example 3.2 Find the probability that, at the moment where the first box is emptied and is 

not found empty, the other contains exactly k matches where k=1,2,….N. Using this result, 

find the probability x that the box first emptied is not the one first found empty. Define all 

events the same as the example 3.1, except by changing “is found empty” to “is empty”. 

Similarly, drop the word “found” in defining )"A(A" LR . Now, finding the box in the right 

pocket empty means N success, and exactly k matches left in the left pocket means that the 

left pocket has been selected (N-k)times. So we have had (N-k) failures. Thus, we have 

)
2

1
,kN,N(f)A(P R   and  
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To find the probability x that the box first emptied is not the one first found empty: 

       
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N         5       10 

 
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
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


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N

1k 1-N
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   126     92378 

X   0.1230    0.0881 
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Finally, we would like to provide another useful example of compound distribution, i.e. 

Poisson distribution compound with negative binomial distribution. 

 

Example 3.3 During its flight period, the instrument compartment of a spacecraft is reached 

by r elementary particles with the probability density function, 
! r

e
),r(f

r 




 . The 

conditional probability for each particle to hit a pre-assigned unit equals p. Find the 

probability that this unit will be hit by (a) exactly k particles; (b) 

at least one particle.  

Let y random variable the number to hit pre-assigned unit with probability p. 
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     pe1)0(P1)1k(P   

There is a trivial reason that we are not interested in the case when r=0. We use the property 

of gamma function, 1(0) and !n)1n(   , we can calculate -1!=1. In this way we 

derive that the probability no particle hit the  

pre-assigned point is 
pe 

 and at least one particle is .e1 p  

 

CONCLUDING REMARKS 

 

The experiments result in counting the number of times particular events occur in given times 

or on given physical objects. For example, we could count the number of phone calls arriving 

at a switchboard between 1 and 2 p.m., the number of customers that arrive at a ticket 

window between 12 noon and 1 p.m., or the number of patients arriving a hospital in a certain 

day. Each count can be looked upon as a random variable associated with an approximate 

Poisson Process with parameter 0 , provided the following four conditions are satisfied. 

1. Random events in non-overlapping intervals are independent.  

2. In an infinitesimal interval of length t , the probability of occurrence exactly 1 event 

is )t(t    

3. In the interval t , the probability that no event occurs is )t(t1   . 

4. In the intervals t , the probability that 2 or more  

events occur is given by )t( .  

Using the above four assumptions, we can show that of probability P(t) operate during time 

interval t follow the 

Poisson Distribution. Let )(Pk   be the probability that   

k events occur during a time period of length  . Then,  



 European Journal of Basic and Applied Sciences   Vol. 5 No. 1, 2018 
  ISSN 2059-3058 

Progressive Academic Publishing, UK   Page 34  www.idpublications.org 

       

t

)t(
)t(P

t

)t(P)tt(P

)]t(t1)[t(P)t(P)t(P)tt(P

0
00

0000

















  

         )t(P
dt

)t(dP
0

0   

        
ndition co initial the as 1P(0) ce       sine)t(P

t)t(Pln

t
0

0








 

        
)],t(t)[t(P)]t(t1)[t(P

)t(P)t(P)t(P)t(P)tt(P

1kk

11k0kk












 

        )]t(P )t(P[
t

)t(
)t(P )t(P

t

)t(P)tt(P
1kk1kk

kk
 











 

Thus,   )t(P )t(P
dt

))t(P(d
1kk

k
   

        
 

2!

t)(
e)t(P  2k For

 t)(e)t(P  1k For

2
t

2

t
1

















 

        0.n      ,
n!

t)(
e)t(P  nk For

n
t

n     

Thus we see that the assumption (1)-(4) given above describe a poisson law. Usually we use 

poisson distribution to approximation of binomial distribution when p is very small and n is 

comparatively large. As seen from the above discussion it also arises when we consider a 

sequence of random events occurring in time or space.              
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