SPECIFIC FORMS OF $3 \times 3 P T$-SYMMETRIC HAMILTONIAN*

Xiaoyu Li, Xinlei Yong, Yifan Han, Yuanhong Tao ${ }^{\dagger}$
Department of Mathematics, College of Science, Yanbian University, Yanji, Jilin 13302

Abstract

The specific forms of $P T$-symmetric Hamiltonians in 3×3 quantum system are studied in this paper. Depending on the relationship between non-Hermitian and Hermitian matrices, a special property of the 3×3 Hamiltonian satisfying $P T$ symmetry is proved, and then specific forms of 3×3 non-Hermitian but $P T$ symmetric Hamiltonian are presented.

Keywords: PT symmetry; Hamiltonian; Hermitian matrix

0 Introduction

In 1998, Bender C. M. et al.[1] put forward PT symmetric quantum theory, which pointed out that non-Hermitian Hamiltonians had real eigenvalues provided they respect unbroken $P T$ symmetry. Although the observables are represented by Hermitian operators in classical quantum system, non-Hermitian observables also play vital roles in physics[1-13]. $P T$ symmetry is refers to the parity-time symmetry, where P and T stand for parity and time reversal respectively.

In quantum mechanics, \hat{x} and \hat{p} stand for coordinate operator and momentum operator, respectively. Their algorithm is as follows [1]:

$$
(\$ f)(x, t)=x f(x, t), \quad(\hat{p} f)(x, t)=-i \frac{\partial}{\partial x} f(x, t) .
$$

If an operator P satisfies the following equality

$$
\begin{equation*}
P \hat{x} P=-\hat{x}, \quad P \hat{p} P=-\hat{p}, \tag{1}
\end{equation*}
$$

Then P is called parity operator (or space inversion operator) [1], in short operator P. Obviously, it is a linear operator. If operate T satisfies

$$
T \hat{x} T=-\hat{x}, \quad T \hat{p} T=-\hat{p}, \quad T i T=-i, \quad \text { (2) where }
$$

$i=\sqrt{-1}$, then T is called time reversal operator [12], in short operator T.
Obviously, it is a conjugate-linear operator.
If H is a $n \times n$ matrix satisfying

$$
\begin{equation*}
H=H^{P T} \tag{3}
\end{equation*}
$$

where $H^{P T}=(P T) H(P T)$, then we say that H is $P T$-symmetric.
By the definition of operator T, time reversion operator is anti-linear, namely conjugate linear, therefore, it can be divided into the following two categories in general:

$$
\begin{equation*}
T\binom{x}{y}=\binom{\bar{x}}{\bar{y}} \quad \text { or } \quad T\binom{x}{y}=\binom{-\bar{x}}{-\bar{y}} \tag{4}
\end{equation*}
$$

where \bar{x} stands for the conjugate of x. We denote the above two kinds of operator T as T_{1} and T_{2}. Obviously, $T_{1}^{2}=T_{2}^{2}=I$ (unit operator).

This paper mainly discusses the specific forms of $P T$-symmetric Hamiltonians in 3×3 quantum system.

1 Preliminary

We begin with the relationship between non-Hermitian matrix and Hermitian matrix[11], and then prove a special property of 3×3 Hamiltonian satisfying $P T$ symmetry.
Lemma 1. [11] Every non-Hermitian matrix N can be expressed by two Hermitian matrices as follows:

$$
\begin{equation*}
N=\frac{1}{2}\left(H_{1}+i H_{2}\right), \tag{5}
\end{equation*}
$$

where H_{1}, H_{2} are both Hermitian matrix, which are not zero matrices.
Obviously, the transpose conjugate matrix N^{\dagger} of N has the following expression

$$
\begin{equation*}
N^{\dagger}=\frac{1}{2}\left(H_{1}-i H_{2}\right) . \tag{6}
\end{equation*}
$$

and H_{1}, H_{2} must be the following forms:

$$
H_{1}=\left(\begin{array}{lll}
a_{1} & b_{1} & c_{1} \tag{7}\\
\overline{b_{1}} & d_{1} & e_{1} \\
\overline{c_{1}} & \overline{e_{1}} & f_{1}
\end{array}\right), \quad H_{2}=\left(\begin{array}{ccc}
\frac{a_{2}}{\overline{b_{2}}} & b_{2} & c_{2} \\
\overline{c_{2}} & \overline{d_{2}} & e_{2} \\
e_{2} & f_{2}
\end{array}\right)
$$

where $a_{1}, d_{1}, f_{1}, a_{2}, d_{2}, f_{2}$ are real numbers, $b_{1}, c_{1}, e_{1}, b_{2}, c_{2}, e_{2}$ are complex numbers. It is from (5) that any 3×3 non-Hermitian matrix H_{N} can be represent as follows:

$$
H_{N}=\left(\begin{array}{lll}
\frac{a_{1}+i a_{2}}{2} & \frac{b_{1}+i b_{2}}{2} & \frac{c_{1}+i c_{2}}{2} \tag{8}\\
\frac{b_{1}+i \overline{b_{2}}}{2} & \frac{d_{1}+i d_{2}}{2} & \frac{e_{1}+i e_{2}}{2} \\
\frac{\overline{c_{1}}+i \overline{c_{2}}}{2} & \frac{\overline{e_{1}}+i \overline{e_{2}}}{2} & \frac{f_{1}+i f_{2}}{2}
\end{array}\right),
$$

where $a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}$ do not equal zero simultaneously.
Lemma 2. Assuming that H is a Hamiltonian of 3×3 quantum system, if H meets $P T$ symmetry, no matter $T=T_{1}$ or $T=T_{2}$, for same operator P, they all have $P \bar{H}=H P$.

Proof suppose that

$$
H=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right), a, b, c, d, e, f, g, h, k \in £
$$

and H meet $P T$-symmetry.
If $T=T_{1}$, then $P T_{1} H=H P T_{1}$, hence

$$
\begin{equation*}
P T_{1} H T_{1}=H P T_{1}^{2}=H P \tag{9}
\end{equation*}
$$

For any $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in C^{2}$, we have

$$
\begin{aligned}
T_{1} H T_{1}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)= & T_{1}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right)\left(\begin{array}{l}
\bar{x} \\
\bar{y} \\
\bar{z}
\end{array}\right)=T_{1}\left(\begin{array}{l}
a \bar{x}+b \bar{y}+c \bar{z} \\
d \bar{x}+e \bar{y}+f \bar{z} \\
\bar{x}+h \bar{y}+k \bar{z}
\end{array}\right) \\
& =\left(\begin{array}{l}
\bar{a} x+\bar{b} y+\overline{c z} \\
\bar{d} x+\bar{e} y+\bar{f} z \\
\bar{g} x+\bar{h} y+\bar{k} z
\end{array}\right)=\left(\begin{array}{lll}
\bar{a} & \bar{b} & \bar{c} \\
\bar{d} & \bar{e} & \bar{f} \\
\bar{g} & \bar{h} & \bar{k}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\bar{H}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\end{aligned}
$$

So, $T_{1} H T_{1}=\bar{H}$, and put it into (9), we have

$$
\begin{equation*}
P \bar{H}=H \dot{j} \tag{10}
\end{equation*}
$$

Similarly, if $T=T_{2}$, we have

$$
\begin{align*}
& T_{1} H T_{1}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=T_{1}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right)\left(\begin{array}{c}
-\bar{x} \\
-\bar{y} \\
-\bar{z}
\end{array}\right)=T_{1}\left(\begin{array}{c}
-(a \bar{x}+b \bar{y}+c \bar{z}) \\
-(d \bar{x}+e \bar{y}+f \bar{z}) \\
-(g \bar{x}+h \bar{y}+k \bar{z})
\end{array}\right) \tag{11}\\
& =\left(\begin{array}{l}
\bar{a} x+\bar{b} y+\bar{c} z \\
\bar{d} x+\bar{e} y+\bar{f} z \\
\bar{g} x+\bar{h} y+\bar{k} z
\end{array}\right)=\left(\begin{array}{ccc}
\bar{a} & \bar{b} & \bar{c} \\
\bar{d} & \bar{e} & \bar{f} \\
\bar{g} & \bar{h} & \bar{k}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\bar{H}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\end{align*}
$$

Namely $T_{2} H T_{2}=\bar{H}$, so $P \bar{H}=H P$.
Lemma 3. [12] In finite dimensional space, any operator P, which is commutate to operator T, is a real matrix.

According to the above lemmas, we have established the forms of operator P in 3×3 quantum system[12], in this paper we choose the following form of operator P :

$$
P=\left(\begin{array}{ccc}
-z & 0 & \sqrt{1-z^{2}} \tag{12}\\
0 & 1 & 0 \\
\sqrt{1-z^{2}} & 0 & z
\end{array}\right), 1 \geq|z| \in_{i}
$$

$2 P T$-symmetric Matrix in 3×3 Quantum System
In this section, let operator T be complex conjugate operator, operator P take form (12). We then present the concrete form of non-Hermitian Hamiltonian H_{N} which satisfies the $P T$ symmetry in 3×3 quantum system.

It follows from Lemma 1 that any 3×3 non-Hermitian matrix H_{N} can be represented as (8). If $\quad H_{N}$ satisfies $P T$ symmetry, then we can calculate the following two quantities:

$$
\begin{align*}
& P \overline{H_{N}}=\left(\begin{array}{ccc}
-z & 0 & \sqrt{1-z^{2}} \\
0 & 1 & 0 \\
\sqrt{1-z^{2}} & 0 & z
\end{array}\right)\left(\begin{array}{ccc}
\frac{a_{1}-i a_{2}}{2} & \frac{\overline{b_{1}}-i \overline{b_{2}}}{2} & \frac{\overline{c_{1}}-i \overline{c_{2}}}{2} \\
\frac{b_{1}-i b_{2}}{2} & \frac{d_{1}-i d_{2}}{2} & \frac{\overline{e_{1}-i \overline{e_{2}}}}{2} \\
\frac{c_{1}-i c_{2}}{2} & \frac{e_{1}-i e_{2}}{2} & \frac{f_{1}-i f_{2}}{2}
\end{array}\right)= \\
& \frac{1}{2}\left(\begin{array}{ccc}
-z\left(a_{1}-i a_{2}\right)+\sqrt{1-z^{2}}\left(c_{1}-i c_{2}\right) & -z\left(\overline{b_{1}}-i \overline{b_{2}}\right)+\sqrt{1-z^{2}}\left(e_{1}-i e_{2}\right) & -z\left(\overline{c_{1}}-i \overline{c_{2}}\right)+\sqrt{1-z^{2}}\left(f_{1}-i f\right) \\
b_{1}-i b_{2} & \overline{e_{1}}-i \overline{e_{2}} \\
\sqrt{1-z^{2}}\left(a_{1}-i a_{2}\right)+z\left(c_{1}-i c_{2}\right) & \sqrt{1-z^{2}}\left(\overline{b_{1}}-i \overline{b_{2}}\right)+z\left(e_{1}-i e_{2}\right) & \sqrt{1-z^{2}}\left(\overline{c_{1}}-i c_{2}\right)+z\left(f_{1}-i f\right)
\end{array}\right) \tag{13}
\end{align*}
$$

$$
\begin{align*}
& H_{N} P=\left(\begin{array}{ccc}
\frac{a_{1}+i a_{2}}{2} & \frac{b_{1}+i b_{2}}{2} & \frac{c_{1}+i c_{2}}{2} \\
\overline{b_{1}}+i \overline{b_{2}} \\
\frac{d_{1}}{2} & \frac{d_{1}+i d_{2}}{2} & \frac{e_{1}+i e_{2}}{2} \\
\overline{c_{1}+i \overline{c_{2}}} 2 & \frac{\overline{e_{1}}+i \overline{e_{2}}}{2} & \frac{f_{1}+i f_{2}}{2}
\end{array}\right)\left(\begin{array}{ccc}
-z & 0 & \sqrt{1-z^{2}} \\
0 & 1 & 0 \\
\sqrt{1-z^{2}} & 0 & z
\end{array}\right)= \\
& \frac{1}{2}\left(\begin{array}{ccc}
-z\left(a_{1}+i a_{2}\right)+\sqrt{1-z^{2}}\left(c_{1}+i c_{2}\right) & -z\left(\overline{b_{1}}+i \overline{b_{2}}\right)+\sqrt{1-z^{2}}\left(e_{1}+i e_{2}\right) & -z\left(\overline{c_{1}}+i \overline{c_{2}}\right)+\sqrt{1-z^{2}}\left(f_{1}+i f\right) \\
b_{1}+i b_{2} & d_{1}+i d_{2} & \overline{e_{1}}+i \overline{e_{2}} \\
\sqrt{1-z^{2}}\left(a_{1}+i a_{2}\right)+z\left(c_{1}+i c_{2}\right) & \sqrt{1-z^{2}}\left(\overline{b_{1}}+i \overline{b_{2}}\right)+z\left(e_{1}+i e_{2}\right) & \sqrt{1-z^{2}}\left(\overline{c_{1}}+i \overline{c_{2}}\right)+z\left(f_{1}+i f\right)
\end{array}\right) \tag{14}
\end{align*}
$$

Note that $P \overline{H_{N}}=H_{N} P$ by Lemma 2, so from (13) and (14) we have

$$
\left\{\begin{array}{c}
-z\left(a_{1}-i a_{2}\right)+\sqrt{1-z^{2}}\left(c_{1}-i c_{2}\right)=-z\left(a_{1}+i a_{2}\right)+\sqrt{1-z^{2}}\left(c_{1}+i c_{2}\right) \\
-z\left(\overline{b_{1}}-i \overline{b_{2}}\right)+\sqrt{1-z^{2}}\left(e_{1}-i e_{2}\right)=b_{1}+i b_{2} \\
-z\left(\overline{c_{1}}-i \overline{c_{2}}\right)+\sqrt{1-z^{2}}\left(f_{1}-i f_{2}\right)=z\left(c_{1}+i c_{2}\right)+\sqrt{1-z^{2}}\left(a_{1}+i a_{2}\right) \\
b_{1}-i b_{2}=-z\left(\overline{b_{1}}+i \overline{b_{2}}\right)+\sqrt{1-z^{2}}\left(e_{1}+i e_{2}\right) \\
d_{1}-i d_{2}=d_{1}+i d_{2} \tag{15}\\
\overline{e_{1}}-i \overline{e_{2}}=z\left(e_{1}+i e_{2}\right)+\sqrt{1-z^{2}}\left(\overline{b_{1}}+i \overline{b_{2}}\right) \\
z\left(c_{1}-i c_{2}\right)+\sqrt{1-z^{2}}\left(a_{1}-i a_{2}\right)=-z\left(\overline{c_{1}}+i \overline{c_{2}}\right)+\sqrt{1-z^{2}}\left(f_{1}+i f_{2}\right) \\
z\left(e_{1}-i e_{2}\right)+\sqrt{1-z^{2}}\left(\overline{b_{1}}-i \overline{b_{2}}\right)=\overline{e_{1}}+i \overline{e_{2}} \\
z\left(f_{1}-i f_{2}\right)+\sqrt{1-z^{2}}\left(\overline{c_{1}}-i \overline{c_{2}}\right)=z\left(f_{1}+i f_{2}\right)+\sqrt{1-z^{2}}\left(\overline{c_{1}}+i \overline{c_{2}}\right)
\end{array}\right.
$$

We can easily get that $c_{2} \in \mathrm{i}$ and (16) from the fourth equality in (15),

$$
\left\{\begin{array}{l}
c_{2} \in \mathrm{i}, a_{2}+f_{2}=0, d_{2}=0 \tag{16}\\
\sqrt{1-z^{2}}(f-q)=\left(z f^{+}\right)_{1} \\
\sqrt{1-z^{2}} e=\bar{z} b+b \\
\sqrt{1-z^{2}} e_{2}=\bar{z} b-b \\
\sqrt{1-z^{2}} \bar{b}=e_{1}-z e \\
\sqrt{1-z^{2}} \overline{b_{2}}=\overline{-e_{2}}-z \underline{e}
\end{array}\right.
$$

In order to fully ensure the relationship between various parameters in (15), and further specific the forms of H_{N}, we analyze (15) in three cases: (I) $z=0$;
(II) $z= \pm 1 ;$ (III) $z \notin\{-1,0,1\}$.
(I) If $z=0$, then $a_{1}=f_{1}, e_{1}=b_{1}, e_{2}=-b_{2}$, so

$$
H_{N}=\frac{1}{2}\left(\begin{array}{ccc}
a_{1}+i a_{2} & b_{1}+i b_{2} & c_{1}+i c_{2} \tag{17}\\
\overline{b_{1}}+i \overline{b_{2}} & d_{1} & b_{1}-i b_{2} \\
\overline{c_{1}}+i c_{2} & \overline{b_{1}}-i \overline{b_{2}} & a_{1}-i a_{2}
\end{array}\right)
$$

For example, let $a_{1}=c_{2}=0, a_{2}=2, b_{1}=-b_{2}=c_{1}=i, d_{1}=1$, then we can take H_{N} as follows,

$$
H_{N}=\frac{1}{2}\left(\begin{array}{ccc}
2 i & i+1 & i \tag{18}\\
-i+1 & 1 & i-1 \\
-i & -i-1 & -2 i
\end{array}\right)
$$

(II) If $\sqrt{1-z^{2}}=0$, namely $z= \pm 1$.

If $z=1, b_{2}, e_{1} \in i \quad$ and the real parts of b_{1}, c_{1}, e_{2} are all zeros, so

$$
H_{N}=\frac{1}{2}\left(\begin{array}{ccc}
a_{1}+i a_{2} & b_{1}+i b_{2} & c_{1}+i c_{2} \tag{19}\\
-b_{1}+i b_{2} & d_{1} & e_{1}+i e_{2} \\
-c_{1}+i c_{2} & e_{1}-i e_{2} & f_{1}-i a_{2}
\end{array}\right)
$$

For example, let $a_{1}=c_{2}=d_{1}=e_{1}=f_{1}=1, a_{2}=2, b_{2}=0, c_{1}=i$, then we can take H_{N} as follows,

$$
H_{N}=\frac{1}{2}\left(\begin{array}{ccc}
1+2 & i & i+1 \tag{20}\\
-i & 1 & 0 \\
0 & 2 & 1-2 i
\end{array}\right)
$$

If $z=-1, b_{1}, b_{2}, e_{2} \in i \quad$ and the real parts of c_{1}, e_{1} are zeros, then

$$
H_{N}=\frac{1}{2}\left(\begin{array}{ccc}
a_{1}+i a_{2} & b_{1}+i b_{2} & c_{1}+i c_{2} \tag{21}\\
b_{1}+i b_{2} & d_{1} & e_{1}+i e_{2} \\
-c_{1}+i c_{2} & -e_{1}+i e_{2} & f_{1}-i a_{2}
\end{array}\right)
$$

For example, let $a_{1}=a_{2}=b_{1}=b_{2}=d_{1}=f_{1}=1, c_{2}=e_{2}=0, e_{1}=2 i$, then we can take H_{N} as follows,

$$
H_{N}=\frac{1}{2}\left(\begin{array}{ccc}
1+i & 1+i & i \tag{22}\\
1+i & 1 & 2 i \\
-i & -2 i & 1-i
\end{array}\right) .
$$

(III) If $z \notin\{-1,0,1\}$, we have $e_{1}=\frac{1}{\sqrt{1-z^{2}}}\left(z \overline{b_{1}}+b_{1}\right), e_{2}=\frac{1}{\sqrt{1-z^{2}}}\left(z \overline{b_{2}}-b_{2}\right)$, then (16) can be changed into

$$
H_{N}=\frac{1}{2}\left(\begin{array}{ccc}
a_{1}+i a_{2} & b_{1}+i b_{2} & c_{1}+i c_{2} \tag{23}\\
\overline{b_{1}}+i \overline{b_{2}} & d_{1} & \frac{\left(z \overline{b_{1}}+b_{1}\right)}{\sqrt{1-z^{2}}}+\frac{i\left(z \overline{b_{2}}-b_{2}\right)}{\sqrt{1-z^{2}}} \\
\overline{c_{1}}+i c_{2} & \frac{\left(z b_{1}+\overline{b_{1}}\right)}{\sqrt{1-z^{2}}}+\frac{i\left(z b_{2}-\overline{b_{2}}\right)}{\sqrt{1-z^{2}}} & f_{1}-i a_{2}
\end{array}\right)
$$

with $a_{1}, f_{1}, c_{1}, \overline{c_{1}}$ satisfied $\sqrt{1-z^{2}}\left(f_{1}-a_{1}\right)=z\left(c_{1}+\overline{c_{1}}\right)$.

3 CONCLUSION

This paper mainly discussed the concrete form of non-Hermitian Hamiltonian satisfying PT symmetry condition in 3×3 quantum system. Depending on the relationship between the non-Hermitian and Hermitian matrices, we first established a special property of the Hamiltonian satisfying $P T$ symmetry, $P \bar{H}=H P$, then we analyzed the specific forms of the non-Hermitian under different conditions.

REFERENCES

[1] C. M. Bender, S. Boettcher. Real spectra in non-Hamiltonians having PT-symmetry[J]. Phys. Rev. Lett. 1998(80), 24: 5243-5246.
[2] C. M. Bender, V. D. Gerald. Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian[J]. J. Math. Phys. 1999, 40(10): 4616-4621.
[3] Q. H. Wang. 2×2 PT symmetric matrices and their applications[J]. Phil. Trans. Rsoc. A. 371: 20120045.
[4] M. H. Cho, J. D. Wu. PT-symmetry[J]. Scientific Journal of Mathematics Research (SJMR), 2012(2): 1-6.
[5] Z. Christian , Q. H. Wang. Entanglement efficiencies in PT-Symmetric quantum mechanics[J]. Int. J. Theor. Phys. 2012,51: 2648-2655.
[6] C. M. Bender, P. D. Mannheim. PT-Symmetry and necessary and sufficient conditions for the reality of energy eigenvalues[J]. Phys. Rev, Lett. A, 2010,

374: 1616-1620.
[7] C. M. Bender, D. W. Hook. Exact isospectral pairs of PT-symmetric Hamiltonians[J]. J. Phys. A, 2008, 41: 244005-244002.
[8] C. M. Bender, D.W. Hook, L. R. Mead. Conjecture on the analyticity of PT-symmetric potentials and the reality of their spectra[J]. J. Phys. A, 2008, 41: 392005-392014.
[9] C. M. Bender. Making sense of non-Hermitian Hamiltonians[J], IOP Publishing, Rep. Prog. Phys. 70 (2007): 947-1018.
[10] H. X. Cao, Z. H. Guo, Z. L. Chen. CPT-Frames for non-Hermitian Hamiltonians[J], Commun. Theor. Phys. 2013, 60: 328-334.
[11] S. J. Wang, Discussion about some properties of non Hermitian operator[J], Journal of Lanzhou University, 1979, 3: 90-97.
[12] X. Y. Li, Z. C. Xu, S. L. Li, X. Gong,Y. H. Tao. Operators P and T in $P T$-symmetric quantum theory[J]. International Journal of Modern Physics: Advances in Theory and Application. 2017, 2(1): 1-9.
[13] X. Y. Li, X. L. Yong, Y. F. Han, X. Gong, Y. H. Tao. Operators P in 2×2 PT-symmetric Quantum System. Mathmatica Aeterna.2017, 7(3): 295-300.
[14]X. Y. Li, X. L. Yong, Y. F. Han, X. Gong, Y. H. Tao. Operator P in 2×2 $P T$-symmetric Quantum System. European Journal of Mathematics and Computer Science.2017, 4(2): 46-51.

