# OPERATOR $P$ IN $2 \times 2 \quad P T$-SYMMETRIC QUANTUM 

# SYSTEM* 

Xiaoyu Li, Xinlei Yong, Yifan Han, Xue Gong, Yuanhong Tao ${ }^{\dagger}$<br>Department of Mathematics, College of Science, Yanbian University<br>Yanji, Jilin 13302


#### Abstract

The forms of operator $P$ are discussed, which ensure a known $2 \times 2$ Hamiltonian to be $P T$-symmetric, in the premise that the operator $T$ is the complex conjugate operator.


Keywords: $P T$-symmetry; operator $P$; operator $T$; Hamiltonian.

## INTRODUCTION

In 1998, Bender C. M. et al. [1] put forward PT symmetric quantum theory, which pointed out that non-Hermitian Hamiltonians had real eigenvalues provided they respect unbroken $P T$ symmetry. $P T$ symmetry is refers to the parity-time symmetry, where $P$ stand for parity and $T$ stand for time reversal. Using non-Hermitian $P T$ - symmetric Hamiltonian to describe quantum mechanics theory was not accepted at the beginning, since people always thought that non-Hermitian physical quantities do not have real eigenvalues, which had no practical meaning.

Bessis D.[2-3]had found that the following Hamiltonian have real eigenvalues,

$$
\begin{equation*}
H=p^{2}+x^{2}+i x^{3}, \tag{1}
\end{equation*}
$$

but did not explain the reason until Bender C. M. found that (1) met $P T$ symmetry. So far there are lots of results about $P T$-symmetric theory [3-11]. Professor Bender have given some examples of $P T$-symmetric Hamiltonians, especially the general form of the $2 \times 2 P T$-symmetric Hamiltonian:

$$
H=\left(\begin{array}{cc}
r e^{i \theta} & s  \tag{2}\\
s & r e^{-i \theta}
\end{array}\right)
$$

[^0]where $r, s, \theta \in R, T$ takes complex conjugate and $P=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
Naturally, there is a question from the mathematical point of view: is there any other forms of operator $P$ ensuring that the Hamitonian $H$ in (2) is also
$P T$ - symmetric where $T$ takes complex conjugate? In this paper, we mainly discuss this problem and give four forms of operator $P$.

## Preliminary

In this section we recall the basic concepts of operator $P$, operator $T$ and $P T$ symmetry.

In quantum mechanics, $\hat{x}$ and $\hat{p}$ stand for coordinate operator and momentum operator, respectively. Their algorithm is as follows [10]:

$$
\begin{align*}
& (x f)(x, t)=x f(x, t),  \tag{3}\\
& (\hat{p} f)(x, t)=-i \frac{\partial}{\partial x} f(x, t) . \tag{4}
\end{align*}
$$

If operate $P$ satisfies the following equality

$$
\begin{equation*}
P \hat{x} P=-\hat{x}, \quad P \hat{p} P=-\hat{p}, \tag{5}
\end{equation*}
$$

Then $P$ is called parity operator (or space inversion operator) [10], in short operator $P$. Obviously, it is a linear operator. If operate $T$ satisfies

$$
\begin{equation*}
T \hat{x} T=-\hat{x}, \quad T \hat{p} T=-\hat{p}, \quad T i T=-i, \tag{6}
\end{equation*}
$$

where $i=\sqrt{-1}$, then $T$ is called time reversal operator[10], in short operator $T$. Obviously, it is a.conjugate-linear operator.

From the above definition, it is easy to know that operator $P$ and $T$ are projectors, namely

$$
\begin{equation*}
P^{2}=T^{2}=I, \tag{7}
\end{equation*}
$$

and $P$ commutates to $T$, namely

$$
\begin{equation*}
P T-T P=0 . \tag{8}
\end{equation*}
$$

So we can also use formula (7) and (8) to determine operator $P$ and $T$.
If $H$ is a $n \times n$ matrix satisfying

$$
\begin{equation*}
H=H^{P T}, \tag{9}
\end{equation*}
$$

where $H^{P T}=(P T) H(P T)$, then we say that $H$ is $P T$-symmetric.
Denoting $[A, B]=A B-B A$, then formula (9) can be written as follows $[H, P T]=H P T-P T H=0 \quad$ or $\quad H P T=P T H$.

By the definition of operator $T$, time reversion operator is anti-linear, namely conjugate linear, therefore, it can be divided into the following two categories in general:

$$
\begin{equation*}
T\binom{x}{y}=\binom{\bar{x}}{\bar{y}} \quad \text { or } \quad T\binom{x}{y}=\binom{-\bar{x}}{-\bar{y}} \tag{10}
\end{equation*}
$$

where $\bar{x}$ stands for the conjugate of $x$. We denote the above two kinds of operator $T$ as $T_{1}$ and $T_{2}$. Obviously, $T_{1}^{2}=T_{2}^{2}=I$ (unit operator).

## The forms of Operator $P$

In this section, let operator $T$ be complex conjugate operator, we then discuss the forms of operator $P$, which ensures the Hamiltonian $H$ in (2) to be $P T$ - symmetric. We begin with some lemmas we have got in [12].

Lemma 1. [12] Assuming that $H$ is a Hamiltonian of $2 \times 2$ quantum system, if $H$ meets $P T$ symmetry, no matter $T=T_{1}$ or $T=T_{2}$, for same operator $P$, they all have $\quad P \bar{H}=H P$.

Lemma 2. [12] In finite dimensional space, any operator $P$, which is commutate to operator $T$, is a real matrix.

Theorem 1. Let $T$ be complex conjugate operator, if the Hamiltonian $H$ in (2) satisfies $P T$ symmetry, then operator $P$ has the following forms:

1) if $s=0$, then $P=\left(\begin{array}{cc}0 & b \\ \frac{1}{b} & 0\end{array}\right)$, where $b \neq 0$;
2) if $s \neq 0$, then $P=\left(\begin{array}{ll}a & b \\ b & a\end{array}\right)$, where $a^{2}+b^{2}=1, a b=0$ 。

Proof. No loss of generality, we only consider the first type of operator $T$ (the
second type of operator $T$ can be discussed similarly). From Lemma 2, we assume that

$$
P=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad T\binom{x}{y}=\binom{\bar{x}}{\bar{y}}, \quad a, b, c, d \in R,
$$

We can easily calculate that

$$
\begin{align*}
& P \bar{H}=\left(\begin{array}{ll}
b s+a r e^{-\theta i} & a s+b r e^{\theta i} \\
d s+c r e^{-\theta i} & c s+d r e^{\theta i}
\end{array}\right),  \tag{11}\\
& H P=\left(\begin{array}{ll}
c s+a r e^{\theta i} & d s+b r e^{\theta i} \\
a s+c r e^{-\theta i} & b s+d r e^{-\theta i}
\end{array}\right), \tag{12}
\end{align*}
$$

From Lemma 1, $P \bar{H}=H P$, then we get the following equation group

$$
\left\{\begin{array}{c}
c s+a r e^{\theta i}=b s+a r e^{-\theta i}  \tag{13}\\
d s+b r e^{\theta i}=a s+b r e^{\theta i} \\
a s+c r e^{-\theta i}=d s+c r e^{-\theta i} \\
b s+d r e^{-\theta i}=c s+d r e^{\theta_{i}}
\end{array}\right.
$$

Obviously, $\quad r \neq 0, \quad \theta \neq 0, \quad$ otherwise the Hamiltonian $H$ in (2) becomes Hermitian, which is not within the scope of our discussion. Note that $P^{2}=I$, then $b c=1$.

If $s=0$, then from (13) we have $a=d=0$, hence

$$
P=\left(\begin{array}{cc}
0 & b \\
\frac{1}{b} & 0
\end{array}\right)
$$

where $b \neq 0$.

$$
\text { If } s \neq 0 \text {, then (13) can be described as follows }
$$

$$
\left\{\begin{align*}
r(a-d) e^{-\theta i} & =r(a-d) e^{\theta i}  \tag{14}\\
r(b-c) e^{-\theta i} & =r(b-c) e^{\theta_{i}}
\end{align*}\right.
$$

Since $r \theta \neq 0$, then (14) implies that $a=d, b=c$, from $P^{2}=I$ again we get

$$
P=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right),
$$

where $a^{2}+b^{2}=1, a b=0$.
Therefore, if $a=0$, then $b= \pm 1$; if $b=0$, then $a= \pm 1$. That is to say, operator $P$ has the following four forms:

$$
P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad P=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right), \quad P=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad P=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) .
$$

In summary, the form of operator $P$ is not unique.

## CONCLUSION

In this paper, we have given a general discussion of operator $P$ for a known $P T$-symmetric Hamiltonian in $2 \times 2$ quantum system. Under the premise that the operator $T$ is a complex conjugate operator, we present four forms of operator $P$ which make the known Hamiltonian always be $P T$-symmetric.

## REFERENCES

[1] C. M. Bender, S. Boettcher. Real spectra in non-Hamiltonians having PT-symmetry[J]. Phys. Rev. Lett. 1998(80), 24: 5243-5246.
[2] D. Bessis. private discussion. This problem originated from discussions between Bessis and J. Zinn-Justin, who was studying Lee-Yang singularities using renormalization group methods.
[3] C. M. Bender, V. D. Gerald. Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian[J]. J. Math. Phys. 1999, 40(10): 4616-4621.
[4] Q. H. Wang. $2 \times 2$ PT symmetric matrices and their applications [J]. Phil. Trans. Rsoc. A. 371: 20120045.
[5] M. H. Cho, J. D. Wu. PT-symmetry[J]. Scientific Journal of Mathematics Research (SJMR), 2012(2): 1-6.
[6] Z. Christian, Q. H. Wang. Entanglement efficiencies in PT-Symmetric quantum mechanics[J]. Int. J. Theor. Phys. 2012,51: 2648-2655.
[7] C. M. Bender, P. D. Mannheim. PT-Symmetry and necessary and sufficient conditions for the reality of energy eigenvalues[J]. Phys. Rev, Lett. A, 2010, 374: 1616-1620.
[8] C. M. Bender, D. W. Hook. Exact isospectral pairs of PT-symmetric Hamiltonians[J]. J. Phys. A, 2008, 41: 244005-244002.
[9] C. M. Bender, D.W. Hook, L. R. Mead. Conjecture on the analyticity of PT-symmetric potentials and the reality of their spectra[J]. J. Phys. A, 2008, 41: 392005-392014.
[10] C.M. Bender. Making sense of non-Hermitian Hamiltonians[J], IOP Publishing, Rep. Prog. Phys. 70 (2007): 947-1018.
[11] H. X. Cao, Z. H. Guo, Z. L. Chen. CPT-Frames for non-Hermitian Hamiltonians[J], Commun. Theor. Phys. 2013, 60: 328-334 .
[12] X. Y. Li, Z. C. Xu, S. L. Li, X. Gong,Y. H. Tao. Operators $P$ and $T$ in $P T$-symmetric quantum theory[J]. International Journal of Modern Physics: Advances in Theory and Application. 2017, 2(1): 1-9.


[^0]:    *This work is supported by Natural Science Foundation of China under 11361065, 11761073.
    $\dagger$ Corresponding author: Yuanhong Tao, E-mail: taoyuanhong12@126.com

