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ABSTRACT 

 

Supported by dramatic advances in computer processing, heuristic methods such as 

metaheuristics (also known as meta-strategies and meta-solutions) have found 

widespread use for solving complex combinatorial optimization problems and 

nonlinear optimization problems. Algorithm performance and ease of implementation 

are important factors in solving complex optimization problems in the real world. With 

the aim of developing an algorithm that excels in both performance and ease of 

implementation, we propose a mean search algorithm and report on its superior results 

in various performance-comparison tests. 

 

Keywords: non-linear programming problem, metaheuristics, mean search algorithm, 

population-based descent algorithm, operational research. 

 

INTRODUCTION 

 

Generally speaking, it is extremely difficult to find a global optimum to complex and 

massive optimization problems that exist in the real world. Many such problems deal 

with high-dimension, multi-modal functions having multiple local optima, so finding 

a global optimum within a realistic period of time is difficult. In addition, techniques 

that can guarantee the finding of a global optimum within an acceptable computation 

time do not, at present, exist. On the other hand, it is sufficient in many 

high-dimension engineering design problems to find a solution that satisfies certain 

constraints (called an “approximate solution” in this paper) without being a global 

optimum. For this reason, attention has recently come to focus on metaheuristics as a 

method for solving complex optimization problems. 

 

Metaheuristics constitute a framework for solving optimization problems by heuristic 

searching. They are problem-independent techniques that can be applied to a wide 

variety of problems. While there is no guarantee that a discovered solution is optimal, 

metaheuristics can be used for finding an approximate solution at high speed [2]. A 

variety of techniques have been proposed as metaheuristics such as the genetic 

algorithm (GA) [3], differential evolution (DE) [8], and particle swarm optimization 
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(PSO) [5, 6]. In particular, DE uses the difference between two solutions in solution 

updating to automatically update the variation width of solution components 

according to the degree of progression of the search. A feature of this algorithm is its 

effectiveness in dealing with complex multi-modal functions despite its simplicity. On 

the other hand, DE suffers from insufficient local searching (centralization) and slow 

speed of convergence. 

 

Complex optimization problems that occur in the real world also require a high 

calculation cost for evaluating the solution. Minimizing the number of solution 

evaluations is therefore important in shortening computation time. In this study, we 

propose a mean search (MS) algorithm as a new algorithm using the mean value of 

coordinate components of solutions. 

 

The MS algorithm enhances local search performance by using the mean value of 

solution coordinates and performs searching while achieving diversity through 

DE-inspired mutations. This method aims to reduce the number of evaluations by 

discovering an approximate solution at an early stage. We demonstrate the 

effectiveness of the MS algorithm through a numerical experiment applying several 

benchmark functions. 

 

METAHEURISTICS 

 

Metaheuristics is a framework for solving optimization problems by heuristic 

searching. They are problem-independent techniques that can be applied to a wide 

variety of problems. Although there is no guarantee that a discovered solution is 

optimal, metaheuristics can be used for finding an approximate solution (a solution 

that satisfies constraints without being a global optimum) at high speed. A variety of 

techniques have been proposed as metaheuristics—GA, DE, and PSO are typical of 

these. 

 

Metaheuristics include various types of algorithms with different properties, such as 

techniques like GA and PSO that speed up solution improvement and techniques like 

the artificial bee colony (ABC) algorithm [1, 4] and harmony search (HS) [9] that 

excel in the accuracy of the final solution.  

 

In this paper, we use the following six algorithms for performing a performance 

comparison with the MS algorithm. 

(a) Artificial bee colony algorithm 

Proposed by Dervis Karaboga in 2005, the ABC algorithm is based on the foraging 

behavior of honey bees [1, 4]. It performs three phases of operations corresponding to 

employed bees, onlookers, and scouts and searches for an optimal solution. 

(b) Cuckoo search 

Cuckoo search (CS) is an optimization algorithm proposed by Xin-She Yang and 

Suash Deb in 2009 [9]. It was inspired by the behavior of some cuckoos that lay their 
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eggs in the nests of other birds to be nurtured by them (called “brood parasitism”). 

This algorithm enhances search performance by performing Lévy flights based on a 

Lévy distribution. 

(c) Differential evolution 

Proposed by Rainer Storn and Kenneth Price in 1997, the DE algorithm enables 

searches tailored to search conditions and problem properties by using a difference 

vector between search points in search-point update processing [8]. 

(d)  Genetic algorithm 

Proposed by John Henry Holland in 1975, GA is modeled on the evolutionary process 

of organisms [3]. It updates search points based on the three basic operations of 

selection, crossover, and mutation. 

(e) Harmony search 

The HS algorithm proposed by G.V. Loganathan, Joong Hoon Kim, and Zong Woo 

Geem in 2001 imitates the improvisation process of musicians [7]. It updates search 

points based on three operations: use existing elements unchanged, change some of 

the existing elements, and replace with new elements. 

(f) Particle swarm optimization 

Proposed by James Kennedy and Russell Eberhart in 1995, POS is an optimization 

method using swarm intelligence [5, 6]. It carries out searching while sharing 

information on best position as found by the group (swarm) and by an individual. In 

the event that a best position is found within the swarm, that information is passed on 

to the other individuals, which are then drawn to the individual with the best position. 

 

MEAN SEARCH ALGORITHM 

 

In general, the possibility is high that an even better solution can be found in the 

vicinity of existing candidate solutions (proximate optimality principle). The MS 

algorithm centralizes search points by performing a move operation to a position 

midway between two randomly selected search points. However, search-point 

centralization can also lead to a loss of search-point diversity. In metaheuristics, 

search-point diversity makes it difficult to become trapped in local optima. A loss of 

diversity can cause solution updating to stop. With this in mind, the MS algorithm 

uses the mean distance between search points to perform efficient mutations 

according to search conditions thereby preserving search-point diversity. 

 

Specifically, the MS algorithm observes the following three rules and generates a new 

search point based on selected (existing) search points. These operations are 

performed on all elements of all individuals. 

 I. Crossover 

A conceptual diagram of crossover processing is shown in Figure 1. This operation 

randomly selects two search points 
t

ajx , 
t

bjx  and treats the position of the mean 

coordinate between those two search points as new search point 
new

ijx . 
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 II. Mutation 

A conceptual diagram of mutation processing is also shown in Figure 1. This 

operation determines the mean distance between the currently selected search point 
t

ijx  

and two randomly selected search points 
t

ajx , 
t

bjx  and randomly generates new search 

point 
new

ijx  within the range of that mean distance. 

 III. Copy 

The copy operation treats the position of a randomly selected search point as new 

search point 
new

ijx . This operation then compares the newly generated search point 

and the currently selected search point, and if the new search point is better, replaces 

the currently selected search point with the new search point. 

 

The specific the MS algorithm execution procedure is as follows. 

 

Step 0. Initialize 

Read in the target function and generate initial population  

consisting of N initial search points xi
1
 (time t =1) each of D dimensions with 

randomly valued elements. 

 

Mean of difference 

ith elements of two 

randomly selected solutions 

Move to mean of two elements 

Difference between ith elements of 

two randomly selected solutions 

ith element of solution 

targeted for update 

Move to random position within this range 

Mutation 

Crossover 

Figure 1. Crossover and mutation in mean search 
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Step 1. Evaluate initial population 

Evaluate search points by the value of the target function f (xi
1) at each search point 

and calculate their fitness. 

Step 2. Update search-point population 

Perform the following processing for all search points. 

Step 2-1. Generate new search point 

Generate new search point xi
new

 according to Eq. (1). 

xij
new =

xaj
t + xbj

t

2
, if ri = j or rand(0, 1) <CR,

xij
m, else if rand(0, 1) <MR,

xij, otherwise.

ì

í

ï
ï
ï

î

ï
ï
ï

 (1) 

Here, CR and MR denote crossover probability and mutation probability, respectively, 

while rand (0, 1) returns a real number from 0 to 1 as a uniformly distributed random 

number. In descending order, each row in the above equation signifies crossover, 

mutation, and inheritance. According to this equation, the mean value of the same 

elements of two other randomly selected search points xaj
t

 and xbj
t

 may be adopted 

depending on crossover probability CR. If not, the value xij
m

 may then be selected 

depending on mutation probability MR. If neither of the above is adopted, the original 

value xij
t
 is adopted as the new search point. The value xij

m
 is determined by Eq. (2) 

below. 

xij
m = xij

t + rand(-1, 1)
xij
t - xaj

t + xij
t - xbj

t

2

æ

è
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ç
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ø
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ê

ù

û

ú
ú
. (2) 

Step 2-2. Evaluate search point  

Evaluate the newly generated search point xi
new

, and if this search point is better than 

the original search point xi
t
 (minimization problem), set xi

new
 as the search point 

after updating.  

Step 3. Test for termination 

Terminate the procedure if termination conditions are satisfied. Otherwise, return to 

Step 2. 

 

 



European Journal of Mathematics and Computer Science  Vol. 4 No. 2, 2017 
  ISSN 2059-9951 

Progressive Academic Publishing, UK Page 57  www.idpublications.org 

NUMERICAL EXPERIMENT, RESULTS, AND DISCUSSION  

 

We performed a numerical experiment to assess the performance of the MS algorithm. 

In this experiment, we executed multiple algorithms including the MS algorithm 

against multiple test functions and demonstrated the superior performance of the MS 

algorithm by comparing the test results of these algorithms. 

 

The test functions used in this experiment are listed in Table 1. All of these 21 test 

functions represent a minimization problem; each was adjusted so that the minimum 

value that could be obtained would be 0. 

 

For the sake of fairness, we adjusted population size and number of generations to 

keep computational complexity as uniform as possible and conducted the experiment 

under a variety of conditions. In this regard, computational complexity is proportional 

to the product NT of population size N and maximum number of generations T, so we 

varied the individual values of N and T without changing the value of their product. 

Specifically, we conducted the experiment with 10,10  TN , NT = 20,000, 40,000, 

80,000, and number of dimensions D = 100, 200, 400. In addition, the experiment was 

independently executed 100 times for each set of conditions and the average of those 

trials was taken to be the final result. 

 

The parameters for each of the algorithms used in the experiment are as follows. With 

N and D denoting population size and number of dimensions, respectively, we set 

mutation probability to 0.1 and crossover probability to 0.1 in the MS algorithm, 

colony size to 2N and limit to 0.1ND in the ABC algorithm, mutation probability to 

0.25 and variation width to 0.01 in the CS algorithm, crossover probability to 0.05 and 

variation width to 1.0 in the DE algorithm, crossover probability to 0.6, mutation 

probability to 0.001, and tournament selection factor to 5 in the GA algorithm, 

selection probability to 0.9, adjustment probability to 0.3, and variation width to 0.001 

in the HS algorithm, and inertia weight coefficient to 0.729, cognitive coefficient to 

1.49445, and social coefficient to 1.49445 in the POS algorithm. 
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Table 1. List of test functions 

Number Function Bounds Continuity Modality 

F01 Ackley 768.32768.32  ix  Continuous Multimodal 

F02 Alpine01 1010  ix  Continuous Multimodal 

F03 CosineMixture 11  ix  Continuous Multimodal 

F04 Csendes 11  ix  Continuous Unimodal 

F05 Dixon&Price 1010  ix  Continuous Unimodal 

F06 Griewank 600600  ix  Continuous Multimodal 

F07 Holzman2 1010  ix  Continuous Unimodal 

F08 Lévy 1010  ix  Continuous Multimodal 

F09 Mishra11 1010  ix  Continuous Unimodal 

F10 Penalty01 5050  ix  Continuous Multimodal 

F11 Penalty02 5050  ix  Continuous Multimodal 

F12 Rastrign 12.512.5  ix  Continuous Multimodal 

F13 Rosenbrock 048.2048.2  ix  Continuous Unimodal 

F14 Salomon 100100  ix  Continuous Multimodal 

F15 Schwefel1.2 6464  ix  Continuous Unimodal 

F16 Schwefel2.21 1010  ix  Continuous Unimodal 

F17 Schwefel2.22 1010  ix  Continuous Unimodal 

F18 Schwefel2.26 512512  ix  Continuous Multimodal 

F19 Sphere 12.512.5  ix  Continuous Unimodal 

F20 Step 12.512.5  ix  Discontinuous Unimodal 

F21 Zakharov 105  ix  Continuous Unimodal 

 

As an example of experimental results, Tables 2 and 3 list results for the conditions 

N=100, T=200, and D=100. 

 

The results listed in Tables 2 and 3 show that the MS algorithm is superior for many test 

functions for the conditions described above. 

 

Figures 2 to 5 show convergence graphs for various test functions. For functions 

whose optimal solution lies in the center such as F1, F3, and F12, the MS algorithm 

converges fast compared with the other algorithms, but for the Schwefel2.26 function 

of Figure 5 whose optimal solution lies near a boundary value, the MS algorithm 

converges relatively slowly. 

 

Next, Figures 6 to 8 each show the results of varying the number of search points and 

number of generations while keeping the product of the number of search points 

(population size) and number of generations unchanged. It can be seen from these 

results that changing the number of dimensions or the value of NT affects algorithm 

performance but hardly affects the manner in which algorithm performance changes 
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according to the N:T ratio. The way in which algorithm performance changes is 

particularly easy to understand from the experimental graphs of Figure 6 for the 

Ackley function.  

 

Table 2. Experimental results for N=100, T=200, and D=100 

MS ABC CS DE GA HS PSO

F01 2.74 19.78 17.19 18.90 10.15 14.93 7.89

F02 0.20 127.46 89.30 113.99 17.58 40.09 30.65

F03 0.75 25.96 45.32 24.42 5.89 9.53 33.36

F04 2.54E-04 5.53 0.39 1.44 4.95E-03 0.36 8.38E-05

F05 1.44E+03 1.03E+07 1.26E+06 3.53E+06 5.69E+04 1.07E+06 5.99E+03

F06 3.37 1.22E+03 380.96 763.77 61.54 259.27 23.96

F07 452.71 2.57E+06 3.12E+05 8.54E+05 1.39E+04 2.68E+05 1.13E+03

F08 1.23 392.95 158.20 270.14 16.87 89.89 14.22

F09 6.05E-07 0.17 0.00 0.06 3.44E-04 7.97E-03 2.99E-05

F10 3.09E+04 1.87E+09 1.94E+08 6.39E+08 2.12E+06 1.63E+08 7.25E+03

F11 9.90E+07 5.38E+09 7.03E+13 3.24E+09 1.28E+07 1.59E+08 3.34E+13

F12 126.55 992.48 840.10 918.32 228.83 326.79 485.61

F13 193.15 1.30E+04 3.21E+03 7.55E+03 840.84 2.92E+03 210.22

F14 2.51 46.40 24.90 35.24 16.20 18.18 6.83

F15 1.25E+05 1.43E+05 6.97E+04 1.19E+05 1.11E+05 1.82E+05 6.81E+03

F16 2.93 9.22 7.04 8.26 7.27 6.90 1.94

F17 1.63 7.40E+06 158.40 637.71 45.25 70.98 37.93

F18 5.88E+03 2.42E+04 2.99E+04 2.36E+04 6.54E+03 7.21E+03 3.28E+04

F19 0.62 352.78 112.02 223.89 17.71 75.92 6.60

F20 33.87 341.02 31.69 274.79 91.08 118.43 387.02

F21 895.19 1.59E+03 660.56 1.29E+03 1.57E+03 1.40E+03 4.79E+09

Time 228.90 119.65 451.90 156.50 147.88 273.86 130.85

Total 13 1 3 0 1 0 4  
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Table 3. Normalized figures for results in Table 2 

MS ABC CS DE GA HS PSO

F01 1.00 7.22 6.27 6.90 3.71 5.45 2.88

F02 1.00 632.49 443.15 565.65 87.23 198.93 152.11

F03 1.00 34.40 60.05 32.36 7.80 12.63 44.20

F04 3.03 6.60E+04 4.63E+03 1.72E+04 59.14 4.33E+03 1.00

F05 1.00 7.14E+03 874.68 2.45E+03 39.39 741.55 4.15

F06 1.00 361.37 113.07 226.68 18.26 76.95 7.11

F07 1.00 5.69E+03 689.68 1.89E+03 30.81 592.81 2.49

F08 1.00 318.99 128.42 219.29 13.70 72.97 11.54

F09 1.00 2.80E+05 0.00 9.11E+04 568.26 1.32E+04 49.37

F10 4.27 2.58E+05 2.68E+04 8.81E+04 292.30 2.25E+04 1.00

F11 7.75 421.28 5.51E+06 253.78 1.00 12.43 2.61E+06

F12 1.00 7.84 6.64 7.26 1.81 2.58 3.84

F13 1.00 67.21 16.64 39.10 4.35 15.12 1.09

F14 1.00 18.48 9.92 14.04 6.45 7.24 2.72

F15 18.35 21.05 10.23 17.48 16.27 26.72 1.00

F16 1.51 4.74 3.62 4.25 3.74 3.55 1.00

F17 1.00 4.53E+06 97.07 390.81 27.73 43.50 23.24

F18 1.00 4.11 5.08 4.01 1.11 1.23 5.58

F19 1.00 571.33 181.41 362.59 28.69 122.95 10.69

F20 1.07 10.76 1.00 8.67 2.87 3.74 12.21

F21 1.36 2.40 1.00 1.95 2.38 2.13 7.26E+06

Time 1.91 1.00 3.78 1.31 1.24 2.29 1.09

Total 13 1 3 0 1 0 4  

 

 

Figure 2. Graphs for F1: Ackley function (N=100, T=200, D=100) 
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Figure 3. Graphs for F3: CosineMixture function (N=100, T=200, D=100) 

 

 

Figure 4. Graphs for F12: Rastrigin function (N=100, T=200, D=100) 

 

 

Figure 5. Graphs for F17: Schwefel2.26 function (N=100, T=200, D=100) 
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In Figure 6, the number of generations increases and the population size decreases 

moving from right to left, and conversely, the number of generations decreases and 

the population size increases moving from left to right. Since the value of NT is the 

same at any point in the graph, computation time is essentially unchanged, but as the 

number of search points increases, the amount of required memory increases. It can 

therefore be said that an algorithm with good performance at the left end of the graph 

is desirable. Moreover, from the viewpoint of ease of parameter setting, good 

performance at the left end is likewise desirable. 

 

Figure 6. Graphs for F1: Ackley function (NT=20,000, D=100) 

 

 

Figure 7. Graphs for F1: Ackley function (NT=20,000, D=400) 
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Figure 8. Graphs for F1: Ackley function (NT=80,000, D=100) 

Table 4 summarizes the performance of each algorithm as obtained from the results 

shown in Figures 6 to 8. 

 

Although the MS algorithm shows superior performance near the center of the graph 

(N:T close to 1:1), its performance deteriorates as the value of N:T becomes further 

removed from 1:1. A key property of the MS algorithm is early convergence of search 

points, and as a result, it can easily lose diversity in the search point population. It is 

therefore considered that a certain number of search points are needed to demonstrate 

good performance. However, excessively increasing the number of search points 

increases the number of generations needed to converge to an approximate solution, 

but in this experiment, the maximum number of generations drops off on approaching 

the right end of the graph, which explains the degraded performance in this area. 

When executing the MS algorithm under conditions of N:T near 1:1, the 

computational complexity can be decided beforehand, and from that, the specific 

number of search points and maximum number of generations can be determined. It 

can therefore be seen that this approach would not apply to the case of “continue 

calculations until obtaining a solution for a certain evaluation value.” 

 

Table 4. Algorithm performance trends 

Algorithm 
Location in graph of 
best performance 

Note 

MS Near center Large change compared with other algorithms 

ABC Left end Few functions for which performance deteriorates 

CS Left end 
Performance improves near graph center depending on the 

function 

DE Left end 
Has properties similar to ABC but performance greatly 

deteriorates for some functions 

GA Slightly right of center Nearly flat from left end to points near center 

HS Left end Slight deterioration in performance at right of graph 

PSO Near center Change is small compared with other algorithms 
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CONCLUSIONS 

 

We proposed an algorithm called the MS (mean search) algorithm that excels in fast 

convergence at an early stage. However, while we have shown that the MS algorithm 

is superior to other algorithms in terms of speed of convergence, its key property of 

using mean values between search points in update processing presents a problem. 

Specifically, for the situation in which optimal solutions exist near boundary values 

with no nearby semi-optimal solutions, the MS algorithm can fall into local optima 

without doing a sufficiently extensive search. Additionally, as mutation processing in 

the MS algorithm makes use of the distance between search points, the variation 

width of search-point coordinates depends heavily on this distance between search 

points. Consequently, if the centralization of search points progresses too fast at an 

early stage, it will be difficult for search points to escape from local optima. To solve 

this problem, we can consider various methods, such as rearranging search points 

after search points have been somewhat centralized and solution updating has been 

terminated, or switching to another algorithm on termination of solution updating. 

Given that the MS algorithm is superior to other algorithms form the viewpoint of 

convergence speed, we consider that it would be applicable to a hybrid method that 

includes switching to another algorithm. 

 

As a future research topic, we aim to develop a more robust and versatile algorithm by 

rearranging search points or using the MS algorithm in combination with another 

algorithm in a hybrid approach and thereby overcome the problem associated with 

termination of solution updating. 
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