
European Journal of Mathematics and Computer Science Vol. 4 No. 2, 2017
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 52 www.idpublications.org

NEW POPULATION-BASED DESCENT ALGORITHM USING

MEAN VALUE OF COORDINATE COMPONENTS

Tatsuya Kobayashi

LAC Co., Ltd.

JAPAN

tatsuya.kobayashi2@gmail.com

Hirotaka Shimizu

Class Technology Co., Ltd.

JAPAN

hirotaka.smz@gmail.com

Tsutomu Shohdohji

Nippon Institute of Technology

JAPAN

shodoji@nit.ac.jp

ABSTRACT

Supported by dramatic advances in computer processing, heuristic methods such as

metaheuristics (also known as meta-strategies and meta-solutions) have found

widespread use for solving complex combinatorial optimization problems and

nonlinear optimization problems. Algorithm performance and ease of implementation

are important factors in solving complex optimization problems in the real world. With

the aim of developing an algorithm that excels in both performance and ease of

implementation, we propose a mean search algorithm and report on its superior results

in various performance-comparison tests.

Keywords: non-linear programming problem, metaheuristics, mean search algorithm,

population-based descent algorithm, operational research.

INTRODUCTION

Generally speaking, it is extremely difficult to find a global optimum to complex and

massive optimization problems that exist in the real world. Many such problems deal

with high-dimension, multi-modal functions having multiple local optima, so finding

a global optimum within a realistic period of time is difficult. In addition, techniques

that can guarantee the finding of a global optimum within an acceptable computation

time do not, at present, exist. On the other hand, it is sufficient in many

high-dimension engineering design problems to find a solution that satisfies certain

constraints (called an “approximate solution” in this paper) without being a global

optimum. For this reason, attention has recently come to focus on metaheuristics as a

method for solving complex optimization problems.

Metaheuristics constitute a framework for solving optimization problems by heuristic

searching. They are problem-independent techniques that can be applied to a wide

variety of problems. While there is no guarantee that a discovered solution is optimal,

metaheuristics can be used for finding an approximate solution at high speed [2]. A

variety of techniques have been proposed as metaheuristics such as the genetic

algorithm (GA) [3], differential evolution (DE) [8], and particle swarm optimization

European Journal of Mathematics and Computer Science Vol. 4 No. 2, 2017
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 53 www.idpublications.org

(PSO) [5, 6]. In particular, DE uses the difference between two solutions in solution

updating to automatically update the variation width of solution components

according to the degree of progression of the search. A feature of this algorithm is its

effectiveness in dealing with complex multi-modal functions despite its simplicity. On

the other hand, DE suffers from insufficient local searching (centralization) and slow

speed of convergence.

Complex optimization problems that occur in the real world also require a high

calculation cost for evaluating the solution. Minimizing the number of solution

evaluations is therefore important in shortening computation time. In this study, we

propose a mean search (MS) algorithm as a new algorithm using the mean value of

coordinate components of solutions.

The MS algorithm enhances local search performance by using the mean value of

solution coordinates and performs searching while achieving diversity through

DE-inspired mutations. This method aims to reduce the number of evaluations by

discovering an approximate solution at an early stage. We demonstrate the

effectiveness of the MS algorithm through a numerical experiment applying several

benchmark functions.

METAHEURISTICS

Metaheuristics is a framework for solving optimization problems by heuristic

searching. They are problem-independent techniques that can be applied to a wide

variety of problems. Although there is no guarantee that a discovered solution is

optimal, metaheuristics can be used for finding an approximate solution (a solution

that satisfies constraints without being a global optimum) at high speed. A variety of

techniques have been proposed as metaheuristics—GA, DE, and PSO are typical of

these.

Metaheuristics include various types of algorithms with different properties, such as

techniques like GA and PSO that speed up solution improvement and techniques like

the artificial bee colony (ABC) algorithm [1, 4] and harmony search (HS) [9] that

excel in the accuracy of the final solution.

In this paper, we use the following six algorithms for performing a performance

comparison with the MS algorithm.

(a) Artificial bee colony algorithm

Proposed by Dervis Karaboga in 2005, the ABC algorithm is based on the foraging

behavior of honey bees [1, 4]. It performs three phases of operations corresponding to

employed bees, onlookers, and scouts and searches for an optimal solution.

(b) Cuckoo search

Cuckoo search (CS) is an optimization algorithm proposed by Xin-She Yang and

Suash Deb in 2009 [9]. It was inspired by the behavior of some cuckoos that lay their

European Journal of Mathematics and Computer Science Vol. 4 No. 2, 2017
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 54 www.idpublications.org

eggs in the nests of other birds to be nurtured by them (called “brood parasitism”).

This algorithm enhances search performance by performing Lévy flights based on a

Lévy distribution.

(c) Differential evolution

Proposed by Rainer Storn and Kenneth Price in 1997, the DE algorithm enables

searches tailored to search conditions and problem properties by using a difference

vector between search points in search-point update processing [8].

(d) Genetic algorithm

Proposed by John Henry Holland in 1975, GA is modeled on the evolutionary process

of organisms [3]. It updates search points based on the three basic operations of

selection, crossover, and mutation.

(e) Harmony search

The HS algorithm proposed by G.V. Loganathan, Joong Hoon Kim, and Zong Woo

Geem in 2001 imitates the improvisation process of musicians [7]. It updates search

points based on three operations: use existing elements unchanged, change some of

the existing elements, and replace with new elements.

(f) Particle swarm optimization

Proposed by James Kennedy and Russell Eberhart in 1995, POS is an optimization

method using swarm intelligence [5, 6]. It carries out searching while sharing

information on best position as found by the group (swarm) and by an individual. In

the event that a best position is found within the swarm, that information is passed on

to the other individuals, which are then drawn to the individual with the best position.

MEAN SEARCH ALGORITHM

In general, the possibility is high that an even better solution can be found in the

vicinity of existing candidate solutions (proximate optimality principle). The MS

algorithm centralizes search points by performing a move operation to a position

midway between two randomly selected search points. However, search-point

centralization can also lead to a loss of search-point diversity. In metaheuristics,

search-point diversity makes it difficult to become trapped in local optima. A loss of

diversity can cause solution updating to stop. With this in mind, the MS algorithm

uses the mean distance between search points to perform efficient mutations

according to search conditions thereby preserving search-point diversity.

Specifically, the MS algorithm observes the following three rules and generates a new

search point based on selected (existing) search points. These operations are

performed on all elements of all individuals.

 I. Crossover

A conceptual diagram of crossover processing is shown in Figure 1. This operation

randomly selects two search points
t

ajx ,
t

bjx and treats the position of the mean

coordinate between those two search points as new search point
new

ijx .

European Journal of Mathematics and Computer Science Vol. 4 No. 2, 2017
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 55 www.idpublications.org

 II. Mutation

A conceptual diagram of mutation processing is also shown in Figure 1. This

operation determines the mean distance between the currently selected search point
t

ijx

and two randomly selected search points
t

ajx ,
t

bjx and randomly generates new search

point
new

ijx within the range of that mean distance.

 III. Copy

The copy operation treats the position of a randomly selected search point as new

search point
new

ijx . This operation then compares the newly generated search point

and the currently selected search point, and if the new search point is better, replaces

the currently selected search point with the new search point.

The specific the MS algorithm execution procedure is as follows.

Step 0. Initialize

Read in the target function and generate initial population

consisting of N initial search points xi
1
 (time t =1) each of D dimensions with

randomly valued elements.

Mean of difference

ith elements of two

randomly selected solutions

Move to mean of two elements

Difference between ith elements of

two randomly selected solutions

ith element of solution

targeted for update

Move to random position within this range

Mutation

Crossover

Figure 1. Crossover and mutation in mean search

European Journal of Mathematics and Computer Science Vol. 4 No. 2, 2017
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 56 www.idpublications.org

Step 1. Evaluate initial population

Evaluate search points by the value of the target function f (xi
1) at each search point

and calculate their fitness.

Step 2. Update search-point population

Perform the following processing for all search points.

Step 2-1. Generate new search point

Generate new search point xi
new

 according to Eq. (1).

xij
new =

xaj
t + xbj

t

2
, if ri = j or rand(0, 1) <CR,

xij
m, else if rand(0, 1) <MR,

xij, otherwise.

ì

í

ï
ï
ï

î

ï
ï
ï

 (1)

Here, CR and MR denote crossover probability and mutation probability, respectively,

while rand (0, 1) returns a real number from 0 to 1 as a uniformly distributed random

number. In descending order, each row in the above equation signifies crossover,

mutation, and inheritance. According to this equation, the mean value of the same

elements of two other randomly selected search points xaj
t

 and xbj
t

 may be adopted

depending on crossover probability CR. If not, the value xij
m

 may then be selected

depending on mutation probability MR. If neither of the above is adopted, the original

value xij
t
 is adopted as the new search point. The value xij

m
 is determined by Eq. (2)

below.

xij
m = xij

t + rand(-1, 1)
xij
t - xaj

t + xij
t - xbj

t

2

æ

è

ç
ç

ö

ø

÷
÷

é

ë

ê
ê

ù

û

ú
ú
. (2)

Step 2-2. Evaluate search point

Evaluate the newly generated search point xi
new

, and if this search point is better than

the original search point xi
t
 (minimization problem), set xi

new
 as the search point

after updating.

Step 3. Test for termination

Terminate the procedure if termination conditions are satisfied. Otherwise, return to

Step 2.

European Journal of Mathematics and Computer Science Vol. 4 No. 2, 2017
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 57 www.idpublications.org

NUMERICAL EXPERIMENT, RESULTS, AND DISCUSSION

We performed a numerical experiment to assess the performance of the MS algorithm.

In this experiment, we executed multiple algorithms including the MS algorithm

against multiple test functions and demonstrated the superior performance of the MS

algorithm by comparing the test results of these algorithms.

The test functions used in this experiment are listed in Table 1. All of these 21 test

functions represent a minimization problem; each was adjusted so that the minimum

value that could be obtained would be 0.

For the sake of fairness, we adjusted population size and number of generations to

keep computational complexity as uniform as possible and conducted the experiment

under a variety of conditions. In this regard, computational complexity is proportional

to the product NT of population size N and maximum number of generations T, so we

varied the individual values of N and T without changing the value of their product.

Specifically, we conducted the experiment with 10,10 TN , NT = 20,000, 40,000,

80,000, and number of dimensions D = 100, 200, 400. In addition, the experiment was

independently executed 100 times for each set of conditions and the average of those

trials was taken to be the final result.

The parameters for each of the algorithms used in the experiment are as follows. With

N and D denoting population size and number of dimensions, respectively, we set

mutation probability to 0.1 and crossover probability to 0.1 in the MS algorithm,

colony size to 2N and limit to 0.1ND in the ABC algorithm, mutation probability to

0.25 and variation width to 0.01 in the CS algorithm, crossover probability to 0.05 and

variation width to 1.0 in the DE algorithm, crossover probability to 0.6, mutation

probability to 0.001, and tournament selection factor to 5 in the GA algorithm,

selection probability to 0.9, adjustment probability to 0.3, and variation width to 0.001

in the HS algorithm, and inertia weight coefficient to 0.729, cognitive coefficient to

1.49445, and social coefficient to 1.49445 in the POS algorithm.

European Journal of Mathematics and Computer Science Vol. 4 No. 2, 2017
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 58 www.idpublications.org

Table 1. List of test functions

Number Function Bounds Continuity Modality

F01 Ackley 768.32768.32 ix Continuous Multimodal

F02 Alpine01 1010 ix Continuous Multimodal

F03 CosineMixture 11 ix Continuous Multimodal

F04 Csendes 11 ix Continuous Unimodal

F05 Dixon&Price 1010 ix Continuous Unimodal

F06 Griewank 600600 ix Continuous Multimodal

F07 Holzman2 1010 ix Continuous Unimodal

F08 Lévy 1010 ix Continuous Multimodal

F09 Mishra11 1010 ix Continuous Unimodal

F10 Penalty01 5050 ix Continuous Multimodal

F11 Penalty02 5050 ix Continuous Multimodal

F12 Rastrign 12.512.5 ix Continuous Multimodal

F13 Rosenbrock 048.2048.2 ix Continuous Unimodal

F14 Salomon 100100 ix Continuous Multimodal

F15 Schwefel1.2 6464 ix Continuous Unimodal

F16 Schwefel2.21 1010 ix Continuous Unimodal

F17 Schwefel2.22 1010 ix Continuous Unimodal

F18 Schwefel2.26 512512 ix Continuous Multimodal

F19 Sphere 12.512.5 ix Continuous Unimodal

F20 Step 12.512.5 ix Discontinuous Unimodal

F21 Zakharov 105 ix Continuous Unimodal

As an example of experimental results, Tables 2 and 3 list results for the conditions

N=100, T=200, and D=100.

The results listed in Tables 2 and 3 show that the MS algorithm is superior for many test

functions for the conditions described above.

Figures 2 to 5 show convergence graphs for various test functions. For functions

whose optimal solution lies in the center such as F1, F3, and F12, the MS algorithm

converges fast compared with the other algorithms, but for the Schwefel2.26 function

of Figure 5 whose optimal solution lies near a boundary value, the MS algorithm

converges relatively slowly.

Next, Figures 6 to 8 each show the results of varying the number of search points and

number of generations while keeping the product of the number of search points

(population size) and number of generations unchanged. It can be seen from these

results that changing the number of dimensions or the value of NT affects algorithm

performance but hardly affects the manner in which algorithm performance changes

European Journal of Mathematics and Computer Science Vol. 4 No. 2, 2017
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 59 www.idpublications.org

according to the N:T ratio. The way in which algorithm performance changes is

particularly easy to understand from the experimental graphs of Figure 6 for the

Ackley function.

Table 2. Experimental results for N=100, T=200, and D=100

MS ABC CS DE GA HS PSO

F01 2.74 19.78 17.19 18.90 10.15 14.93 7.89

F02 0.20 127.46 89.30 113.99 17.58 40.09 30.65

F03 0.75 25.96 45.32 24.42 5.89 9.53 33.36

F04 2.54E-04 5.53 0.39 1.44 4.95E-03 0.36 8.38E-05

F05 1.44E+03 1.03E+07 1.26E+06 3.53E+06 5.69E+04 1.07E+06 5.99E+03

F06 3.37 1.22E+03 380.96 763.77 61.54 259.27 23.96

F07 452.71 2.57E+06 3.12E+05 8.54E+05 1.39E+04 2.68E+05 1.13E+03

F08 1.23 392.95 158.20 270.14 16.87 89.89 14.22

F09 6.05E-07 0.17 0.00 0.06 3.44E-04 7.97E-03 2.99E-05

F10 3.09E+04 1.87E+09 1.94E+08 6.39E+08 2.12E+06 1.63E+08 7.25E+03

F11 9.90E+07 5.38E+09 7.03E+13 3.24E+09 1.28E+07 1.59E+08 3.34E+13

F12 126.55 992.48 840.10 918.32 228.83 326.79 485.61

F13 193.15 1.30E+04 3.21E+03 7.55E+03 840.84 2.92E+03 210.22

F14 2.51 46.40 24.90 35.24 16.20 18.18 6.83

F15 1.25E+05 1.43E+05 6.97E+04 1.19E+05 1.11E+05 1.82E+05 6.81E+03

F16 2.93 9.22 7.04 8.26 7.27 6.90 1.94

F17 1.63 7.40E+06 158.40 637.71 45.25 70.98 37.93

F18 5.88E+03 2.42E+04 2.99E+04 2.36E+04 6.54E+03 7.21E+03 3.28E+04

F19 0.62 352.78 112.02 223.89 17.71 75.92 6.60

F20 33.87 341.02 31.69 274.79 91.08 118.43 387.02

F21 895.19 1.59E+03 660.56 1.29E+03 1.57E+03 1.40E+03 4.79E+09

Time 228.90 119.65 451.90 156.50 147.88 273.86 130.85

Total 13 1 3 0 1 0 4

European Journal of Mathematics and Computer Science Vol. 4 No. 2, 2017
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 60 www.idpublications.org

Table 3. Normalized figures for results in Table 2

MS ABC CS DE GA HS PSO

F01 1.00 7.22 6.27 6.90 3.71 5.45 2.88

F02 1.00 632.49 443.15 565.65 87.23 198.93 152.11

F03 1.00 34.40 60.05 32.36 7.80 12.63 44.20

F04 3.03 6.60E+04 4.63E+03 1.72E+04 59.14 4.33E+03 1.00

F05 1.00 7.14E+03 874.68 2.45E+03 39.39 741.55 4.15

F06 1.00 361.37 113.07 226.68 18.26 76.95 7.11

F07 1.00 5.69E+03 689.68 1.89E+03 30.81 592.81 2.49

F08 1.00 318.99 128.42 219.29 13.70 72.97 11.54

F09 1.00 2.80E+05 0.00 9.11E+04 568.26 1.32E+04 49.37

F10 4.27 2.58E+05 2.68E+04 8.81E+04 292.30 2.25E+04 1.00

F11 7.75 421.28 5.51E+06 253.78 1.00 12.43 2.61E+06

F12 1.00 7.84 6.64 7.26 1.81 2.58 3.84

F13 1.00 67.21 16.64 39.10 4.35 15.12 1.09

F14 1.00 18.48 9.92 14.04 6.45 7.24 2.72

F15 18.35 21.05 10.23 17.48 16.27 26.72 1.00

F16 1.51 4.74 3.62 4.25 3.74 3.55 1.00

F17 1.00 4.53E+06 97.07 390.81 27.73 43.50 23.24

F18 1.00 4.11 5.08 4.01 1.11 1.23 5.58

F19 1.00 571.33 181.41 362.59 28.69 122.95 10.69

F20 1.07 10.76 1.00 8.67 2.87 3.74 12.21

F21 1.36 2.40 1.00 1.95 2.38 2.13 7.26E+06

Time 1.91 1.00 3.78 1.31 1.24 2.29 1.09

Total 13 1 3 0 1 0 4

Figure 2. Graphs for F1: Ackley function (N=100, T=200, D=100)

European Journal of Mathematics and Computer Science Vol. 4 No. 2, 2017
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 61 www.idpublications.org

Figure 3. Graphs for F3: CosineMixture function (N=100, T=200, D=100)

Figure 4. Graphs for F12: Rastrigin function (N=100, T=200, D=100)

Figure 5. Graphs for F17: Schwefel2.26 function (N=100, T=200, D=100)

European Journal of Mathematics and Computer Science Vol. 4 No. 2, 2017
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 62 www.idpublications.org

In Figure 6, the number of generations increases and the population size decreases

moving from right to left, and conversely, the number of generations decreases and

the population size increases moving from left to right. Since the value of NT is the

same at any point in the graph, computation time is essentially unchanged, but as the

number of search points increases, the amount of required memory increases. It can

therefore be said that an algorithm with good performance at the left end of the graph

is desirable. Moreover, from the viewpoint of ease of parameter setting, good

performance at the left end is likewise desirable.

Figure 6. Graphs for F1: Ackley function (NT=20,000, D=100)

Figure 7. Graphs for F1: Ackley function (NT=20,000, D=400)

European Journal of Mathematics and Computer Science Vol. 4 No. 2, 2017
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 63 www.idpublications.org

Figure 8. Graphs for F1: Ackley function (NT=80,000, D=100)

Table 4 summarizes the performance of each algorithm as obtained from the results

shown in Figures 6 to 8.

Although the MS algorithm shows superior performance near the center of the graph

(N:T close to 1:1), its performance deteriorates as the value of N:T becomes further

removed from 1:1. A key property of the MS algorithm is early convergence of search

points, and as a result, it can easily lose diversity in the search point population. It is

therefore considered that a certain number of search points are needed to demonstrate

good performance. However, excessively increasing the number of search points

increases the number of generations needed to converge to an approximate solution,

but in this experiment, the maximum number of generations drops off on approaching

the right end of the graph, which explains the degraded performance in this area.

When executing the MS algorithm under conditions of N:T near 1:1, the

computational complexity can be decided beforehand, and from that, the specific

number of search points and maximum number of generations can be determined. It

can therefore be seen that this approach would not apply to the case of “continue

calculations until obtaining a solution for a certain evaluation value.”

Table 4. Algorithm performance trends

Algorithm
Location in graph of
best performance

Note

MS Near center Large change compared with other algorithms

ABC Left end Few functions for which performance deteriorates

CS Left end
Performance improves near graph center depending on the

function

DE Left end
Has properties similar to ABC but performance greatly

deteriorates for some functions

GA Slightly right of center Nearly flat from left end to points near center

HS Left end Slight deterioration in performance at right of graph

PSO Near center Change is small compared with other algorithms

European Journal of Mathematics and Computer Science Vol. 4 No. 2, 2017
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 64 www.idpublications.org

CONCLUSIONS

We proposed an algorithm called the MS (mean search) algorithm that excels in fast

convergence at an early stage. However, while we have shown that the MS algorithm

is superior to other algorithms in terms of speed of convergence, its key property of

using mean values between search points in update processing presents a problem.

Specifically, for the situation in which optimal solutions exist near boundary values

with no nearby semi-optimal solutions, the MS algorithm can fall into local optima

without doing a sufficiently extensive search. Additionally, as mutation processing in

the MS algorithm makes use of the distance between search points, the variation

width of search-point coordinates depends heavily on this distance between search

points. Consequently, if the centralization of search points progresses too fast at an

early stage, it will be difficult for search points to escape from local optima. To solve

this problem, we can consider various methods, such as rearranging search points

after search points have been somewhat centralized and solution updating has been

terminated, or switching to another algorithm on termination of solution updating.

Given that the MS algorithm is superior to other algorithms form the viewpoint of

convergence speed, we consider that it would be applicable to a hybrid method that

includes switching to another algorithm.

As a future research topic, we aim to develop a more robust and versatile algorithm by

rearranging search points or using the MS algorithm in combination with another

algorithm in a hybrid approach and thereby overcome the problem associated with

termination of solution updating.

REFERENCES

[1] Basturk, B. & Karaboga, D. (2006) An artificial bee colony (ABC) algorithm for

numeric function optimization, IEEE Swarm Intelligence Sympousium, May

12-14, Indianapolis, Indiana, USA.

[2] Blum, C., & Roli, A. (2003) Metaheuristics in Combinatorial Optimization:

Overview and Conceptual Comparison, ACM Computing Surveys, 35-3,

September, 268-308.

[3] Holland, J. H. (1975) Adaptation in Natural and Artificial Systems, University of

Michigan Press, Annarbor, MI, USA.

[4] Karaboga, D. (2005) An idea based on honey bee swarm for numerical

optimization, Technical Report-TR06, Erciyes University, Engineering Faculty,

Computer Engineering Department, Turkey.

[5] Kennedy, J. & Eberhart, R. C. (1995) Particle Swarm Optimization, Proceedings

of the IEEE International Conference on Neural Networks, 1942-1948.

[6] Kennedy, J. & Eberhart, R. C. (2001) SWARM INTELLIGENCE, Academic

Press.

[7] Loganathan, G.V., Kim, J. H., & Geem, Z. W. (2001) A New Heuristic

Optimization Algorithm: Harmony Search, SIMULATION, 76, 60-68.

[8] Storn, R. M., & Price, K. V. (1997) Differential Evolution – A Simple and Efficient

Heuristic for global Optimization over Continuous Space, Journal of Global

Optimization, 11, 341-359.

European Journal of Mathematics and Computer Science Vol. 4 No. 2, 2017
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 65 www.idpublications.org

[9] Xin-She Yang & Suash Deb (2009) Cuckoo Search via Levy Flights, Nature &

Biologically Inspired Computing, 210-214.

