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ABSTRACT 

 

In this paper, we prove the existence and uniqueness of solutions for a class of initial value 

problem for impulsive fractional q-difference equation of order1 2   by applying some 

well-known fixed point theorems. Some examples are presented to illustrate the main results. 
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INTRODUCTION 
 

In recent years, the topic of q-calculus has attracted the attention of several researchers and a 

variety of new results on q -difference and fractional q -difference equations can be found in 

the papers [1-13] and the references cited therein. In [14] the notions of qk-derivative and qk -

integral of a function 1: : [ , ]k k kf J t t  R have been introduced and their basic properties was 

proved. As applications existence and uniqueness results for initial value problems for first 

and second order impulsive qk -difference equations are proved. In [15] , the authors applied 

the concepts of quantum calculus developed in [14] to study a class of boundary value 

problem of ordinary impulsive qk-integro-difference equations, some existence and 

uniqueness results for this problem were proved by using a variety of fixed point theorems. In 

[16] the authors used the q -shifting operator to develop the new concepts of fractional 

quantum calculus such as the Riemann–Liouville fractional derivative and integral and their 

properties. They also formulated the existence and uniqueness results for some classes of first 

and second orders impulsive fractional q -difference equations. Inspired by[16], in this paper, 

we study the existence and uniqueness of solutions for the following initial value problem for 

impulsive fractional q-differ- ence equation of order 1 2   the form 

0 0 0
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where 0 1 2 1 0 0 1 1[0, ],  0 ,  [ , ],  ( , ]k m m k k kJ T t t t t t t T J t t J t t             , 1,2, ,k m .
k kt qD

and 1

k kt qD  respectively are the Riemann-Liouville fractional q-difference of order  and 1 

on interval kJ , 0 1kq  for 1,2, ,k m , :f J  R R  is a continuous function, 
*, ( , )k k C   R R  for 1,2, ,k m . The notationΔ ( )kx t and *Δ ( )kx t are defined by 
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          (1.2) 

where 1

k kt qI  and 2

k kt qI   respectively are  the Riemann-Liouville fractional q-integral of order 

1  and 2  on kJ . 
0 00 1,  {1,2, , },  ( , ]k kk m t t    R . 
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Preliminaries 

 

This section is devoted to some basic concepts such as q-shifting operator, Riemann–

Liouville fractional q-integral and q-difference on a given interval. The presentation here can 

be found in, for example, [16,17]. 

We define a q-shifting operator as  

Φ ( ) (1 )a q m qm q a   . 

The power of q-shifting operator is defined as 
1
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Definition 2.1. The fractional q-derivative of Riemann–Liouville type of order 0v   on 

interval [ , ]a b is defined by 0( )( ) ( )a qD f t f t  and 

( )( ) ( )( ),  0v l l v

a q a qa qD f t D I f t v  ,   

where l is the smallest integer greater than or equal to ν.  

Definition 2.2. Let 0   and f  be a function defined on [ , ]a b . The fractional q-integral of 

Riemann–Liouville type is given by 0( )( ) ( )a qI f t f t  and 

( 1)1
( )( ) ( Φ ( )) ( ) ,  0, [ , ].
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t
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q
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From [16] , we have the following formulas for [ , ], 0,t a b    R : 
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. 

Lemma 2.3. Let ,  R  and f  be a continuous function on [ , ], 0a b a  . The Riemann–

Liouville  fractional q-integral has the following semi-group property  

( ) ( ) ( )a q a q a q a q a qI I f t I I f t I f t       . 

Lemma 2.4. Let f be a q-integrable function on [ , ]a b  . Then the following equality holds 

( ) ( )a q a qD I f t f t   . For 0, [ , ]t a b   . 

Lemma 2.5. Le t 0   and p be a positive integer. Then for [ , ]t a b  the following equality 

holds 
1
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 . 

Lemma 2.6. ([18])Let E be a Banach space. Assume that  is an open bounded subset of E  

with    and let :T E   be a completely continuous operator such that 

,Tu u u    . 

Then T has a fixed point in . 

Lemma 2.7. ([18]). Let E be a Banach space. Assume that :T E E  is a completely 

continuous operator and the set { ,0 1}V u E u Tu      is bounded. Then T has a fixed 

point in E. 

Let ( , ) { : : ( )PC J x J x t R R is continuous everywhere except for some kt at which ( )kx t

and ( )kx t  
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exist and ( )= ( )  1,2,3, , }k kx t x t k m- ， . For + R , we introduce  the space
, ( , ) { :k k kC J x J  R

: ( )kt t R:  ( ) ( , )}kx t C J R  with the norm 
,

sup ( ) ( )
kk

t J kC
x t t x t





   and ( , ) { : :PC J x J  R R:

for each kt J and 

( ) ( ) ( , ), 0,1 , }k kt t x t C J k m   ,2R  with the norm max{sup ( ) ( ) : 0,1 , }
kt J kPC

x t t x t k m




   ,2 . 

Clearly ( , )PC J R is a Banach space. 

Lemma2.8 If ( , )x PC J R  is a solution of (1.1), then for any , 1,2, ,kt J k m  , 
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                 (2.3) 

With 0 
0< 0

() . 

Proof.  For 0t J , taking the Riemann-Liouville fractional 0q -integral of order   for the 

first 

equation of (1.1) and using Definition 2.1 with Lemma 2.5, we get 

0
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                 (2.4) 

where
0

2

0 0= (0)qC I x  and 
0

1

1 0= (0)qC I x .The first initial condition of (1.1) implies that 0 =0C

.Taking the Riemann-Liouville fractional 0q -derivative of order 1  for (2.4) on 0J , we have 
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 .                              (2.5) 

Applying the Riemann-Liouville fractional 0q -derivative of orders 1  and 2   for (2.5) at

1=t t , we have 
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For 1 1 2=( , ]t J t t , Riemann-Liouville fractional 1q -integrating (1.1), we obtain 
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,           (2.7) 

Using the jump conditions of equation (1.1) with (2.6)-(2.7) for 1t J , we get 
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Repeating the above process, for 1=( , ]k k kt J t t  , we obtain 
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            (2.8) 

Taking the Riemann-Liouville fractional kq -derivative of order 1  for (2.8) and using 

(0)
kq   , 

it follows that  
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For 
0 00 1{1,2, , },  ( , ]k kk m t t   , we have 
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The initial condition 
0 0 0
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Substituting the value of 1C in (2.8), we obtain (2.1). Conversely, assume that x is a solution 

of the impulsive fractional integral equation (2.1), then by a direct computation, it follows 

that the solution given by(2.1)satisfies equation (1.1). This completes the proof. 

 

Main results  

 

This section deals with the existence and uniqueness of solutions for the equation (1.1) . In 

view of Lemma 2.8 , we define an operator : ( , ) ( , )A PC J PC JR R by 
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where 1 2,  m m  are given by (2.2) and (2.3). 
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  , then equation 

(1.1) has at least one solution. 
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get ( , )Ax PC J R . Now we show that the operator : ( , ) ( , )A PC J PC J R R  is completely 
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   (3.1)                  

which implies that 
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This implies that A is equicontinuous on all the subintervals  , 0 1,2, ,kJ k m ， . Thus, by 
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Define ={ ( , ) : }x PC J x r  R and take ( , )x PC J R  such that =x r so that x  . Then, 

by the process used to obtain (3.1), we have 
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which implies that ( )( ) ,Ax t x x   . 

Therefore, by Lemma 2.6, the operator A has at least one fixed point, which in turn 

implies that (1.1) has at least one solution x  . This completes the proof. 

Theorem 3.2. Assume that 

(H1) there exist positive constants Li (i = 1, 2, 3) such that 
*

1 2 3( , ) ,  ( ) ,  ( )k kf t x L x L x L     for ,t J x R  and 1,2, ,k m . 

Then equation (1.1) has at least one solution. 

Proof. As shown in Theorem 3.1, the operator : ( , ) ( , )A PC J PC J R R is completely 

continuous. Now, we show the set { ( , ) ,0 1}V x PC J x Ax      R is bounded. 

Let x V , then ,0 1x Ax    . For any t J , we have 
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,                    (3.2) 

where 1 2,  m m are given by (2.2) and (2.3). Combining (H1) and (3.2), we obtain 
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Thus, for any t J , it follows that x L . So, the set V is bounded. Therefore, by the 

conclusion of Lemma 2.7, the operator A has at least one fixed point. This impliesthat (1.1) 

has at least one solution. This completes the proof. 
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k k kq q q        . 
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where is given by (3.3). Thus,
PC PC

Ax Ay x y
 

   . As 1  , therefore, A is a 

contraction. Hence, by the contraction mapping principle, equation (1.1) has a unique 

solution. 

 

Examples 

 

Example 4.1. Consider the following impulsive fractional q-difference initial value problem: 

3

4

3

2 2 32

3 7

2 8
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2
0 7 1

8 5

11
( ) arctan ( ) ( ),  [0, ], ,
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2
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x t k k x t k t
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x t k x t k t

x D x
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1
( ),                                 
4
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Here 3 4

03 2, ( 3 7) (2 8),  1,2, ,10, 10, 11 10, 2 3, 2,  1 4kq k k k k k m T k              , 
2 2 3( , ( )) arctan ( ) ( )tf t x t t x t e x t  , ( ( )) cos ( )k k kx t k k x t   , * 3( ( )) sin ( )k k kx t k x t  , 

Clearly, all the assumptions of Theorem 3.1 are satisfied. Thus, by the conclusion of 

Theorem 3.1, the impulsive fractional q-difference initial value problem 4.1 has at least one 

solution. 

Example 4.2. Consider the following impulsive fractional q-difference initial value problem: 
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3 5

2
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2
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0 7 1 3
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2 1
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3 4
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x t k k x t k t
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Here 3 4

03 2, ( 3 7) (2 8),  1,2, ,9,  9,  1,  2 3,  2,  1 4kq k k k k k m T k              , 
5

4

sin ( )
( , ( ))

1 ( )

te x t
f t x t

x t



, 2( ( )) 3 cos ( )k k kx t k k x t   , ( )*( ( )) sin(4 )kx t

k kx t k e   , 

Clearly 1 2 3, 36, 9L e L L    and the conditions of Theorem 3.2 can readily be verified. 

Therefore, the conclusion of Theorem 3.2 applies to the impulsive fractional q-difference 

initial value problem 4.2. 
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