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ABSTRACT 

 
 We  treat the  problem  of the automatic continuity of  the Derivations  in  Banach algebras  
provided  with an  involution σ. To  do  this,  we introduce and  study  on  a unitary algebra  

provided  with  an involution  a notion  which we call σ-semi-simplicity. It is based on the 
study  of certain bilateral  ideals called σ-ideals. 
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INTRODUCTION 

 
In Automatic Continuity theory we are concerned with algebraic conditions on a linear map 
between Banach spaces which make this map automatically continuous. This theory has been 

mainly developed in the context of Banach algebras, and there are excellent accounts on 
automatic continuity theory [2, 3, 5] (see also [6]) in this associative context. In [7] Singer 

and Wermer proved that the range of a continuous derivation on a commutative Banach 
algebra is contained in the Jacobson radical. They conjectured that the assumption of 
continuity is unnecessary. In [4] Johnson proved that if A  is a semi-simple Banach algebra, 

then every derivation on A is continuous and hence by the Singer-Wermer theorem it is zero. 
 

In this work, we define and study on a unitary algebra provided with an involution   a 

notion which called  -semi-simplicity which generalizes the notion of semi-simplicity, it 
rests on the study of certain bilateral ideals called  -ideals. The interest therefore is to 

restrict oneself to the level of a family of bilateral ideals instead of considering all the ideals 

on the left. This notion of  -semi-simplicity will also contribute to the study of the 

automatic continuity of linear operators on Banach algebras, in particular the continuity of 
derivations. We will show that on a  -semi-simple Banach algebra, every derivation is 

continuous (Theorem 2.2). 
 

Preliminaries 

 

In these papers, the algebras considered are assumed complex, Unitary, not necessarily 
commutative. An involution   on an algebra A is a mapping:  satisfying the following 

properties: )()()( yxyx   , )()()( xyxy   , xx ))(( , )()( xx 


  ∀

∈ IK, for all yx,  in A .  With involution  , A is called   -algebra. An ideal I of  -algebra 
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is called a  -ideal if    ( I ) I  (then  II )( ). Moreover, I is said to be a  -minimal  

(resp.  -maximal) ideal of A if I is minimal (resp.  maximal) in the set of nonzero (resp. 

proper)   -ideals of A. Observe that if I  is an ideal of A, then I + ( I  ), I   ( I ),   (

I  ) I  and I    ( I  ) are  -ideals of A. Moreover, if we denoted by   the map from 

I
A to 

I
A  defined by  ( IaIa  )()  , then   is a well-defined involution on 

I
A . 

 

Characterizations of  -semi-simple algebras 

 
An algebra A  is called simple if it has no proper ideals.  An  -algebra A is called  -

simple if it has no proper  -ideals. We observe that every simple algebra with involution (

),A  is a  -simple. The following counterexample shows the converse is not true.  

 

Counterexample 1.1    Let A  be a simple algebra, we denoted by A ° the opposite algebra A . 

Consider the algebra B = A  A  °. Provided with the exchange involution defined by:                          

 ),(),( xyyx  ,  It clear that B is not simple, since the ideals of B  are (0), A , {0}x A ° and 

A x{0}. But B  is   -simple. Indeed, the only  -ideals of B  are 0 and B .                                                                                                                                            

It is therefore natural to ask under what conditions the converse is true. It is subject to the 

following proposition:  
 

Proposition 1.1   Let ( A , ) be   -simple algebra. If the involution   is anisotropic, then 

A  is simple.  

 Recall that involution is called anisotropic if : Aa , it 0)( aa  = 0   a  = 0 .                                                             

 
Proof                                                                                                                                                                                               

Let I be an ideal of A , then  )(II   is an  -ideal. It follows that,  )(II   = {0 } or = A . 

If                    )(II   = {0 }, then 0)( xx Ix .  Since   is anisotropic, then x  = 0 ,   

a result that               I  = {0 }. If )(II   = A , then I  = A   

 

Proposition 1.2   Let A   is  -algebra. Then A  is a   -simple if, and only if, there exist a 

maximal ideal M  such that,  M    ( M ) = {0 }.                                                                                                                                                                                 
 

Proof                                                                                                                                                                                                

  We assume A  is  -simple. Let M  be a maximal ideal of A .  We have M   ( M ) is a 

  -ideal of A , then  M   ( M ) = { 0 } or A .  If M   ( M ) = A , then M  = A , which 

contradicts the fact that M is a proper ideal. Hence, M   ( M ) = { 0 }.     

 Assume that, there exists a maximal ideal M such that M   ( M ) = { 0 }. Let I is a  -

ideal of A . If I   M , then  ( I ) = I   ( M ), where I  M   (M ) = { 0 }. If  I  

M , then M = I + A , and we have:  ( M ) + I  = ( ( M ) + I ) A =( (M ) + I  )( M + I ) 
 ( M ) M + I  = I . Which implies that  ( M )   I , as a result, M   I . Since M is 

maximum ideal of A , so it follows that  A  = I    

 

Proposition 1.3 [8]   Let A  an  -simple algebra which is not simple. Then, there exists a 
sub- algebra simple unit I  of A  such that A  = I    ( I ).                                                                                                                      

 

Proof                                                                                                                                                                              

Let  I  a proper ideal of A .  So it follows  that   I   ( I ) is a  -ideal, since A  is a  -
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simple algebra, then I   ( I ) = { 0 } or I   ( I ) = A. If I   ( I ) = A   then I  = A , 

which is absurd.                  From where I   ( I ) = { 0 }. There is also I +  ( I ) is a  -

ideal, then I  +  ( I ) = { 0 }, or                       I + ( I ) = A .  If I  +  ( I ) = { 0 }, then I  

= { 0 }, which contradicts the fact that I  is proper. Therefore, A  = I    ( I ). Let J  an 

ideal of A  such that J    I . According to what precedes,         A = J   ( J ). Let i    I , 

then there exists j , j ’  J  such that i = j +  ( j '). However                           i - j = ( j ') 

I   ( I ) = { 0 }, from where  i  = j , therefore I = J . Consequently, I  is a minimal ideal 

of A .  Let J  an ideal of I , then J  is an ideal of A . Indeed, let a  A  and j   J  , then it 

exists i , ( i ’) such that a = i  +  ( i ’). From where aj  = ( i  +  ( i ’). j  = ij +  ( i ’) j . 

However,       ( i ’) j   ( I ) I  and  ( I ) I    I   ( I ) = { 0 }, consequently  aj  = ij 

I .  Since I  is a minimal ideal, then J  = { 0 } or I = J . Thus, I a simple sub-algebra. On 

other hand, I a unital and if 1 indicates the unit of A , then there exists e , e ’  I  such that 1 

= e  +  ( e ’) .   Let x  I , we are:  x  = x 1 = x e  + x   ( e '), but x  - x e  = x   (e ')    I

  ( I ) = { 0 }, from where x  = x e .  In the same way, we checked that x  = e x . 

Consequently, I  a unital of unit e    

 

Proposition 1.4   Let A  be a  -algebra and M   -maximal ideal which is not maximal. 

Then there exists a maximal ideal N  of A  such that M = N    ( N ).                                                                                                                     

 
Proof                                                                                                                                                                                 

As M  is not maximal, there is a maximal ideal N  of A  such that M   N . Since                                  

 ( M ) = M    ( N ), where  M   N     ( N ). Since  N    ( N ) is a   -ideal of A

, it follows therefore that M  = N    ( N )  

 

Definition 1.1   Let A  be a  -algebra. We call  -radical of A , denoted )(ARad ,  the 

intersection of all ideals  - maximal of A . A  is called  -semi-simple if )(ARad = { 0 }. 

 

Proposition 1.5   Let I be a  -ideal of a  -algebra A  such that I  )(ARad .  So 

)/( IARad  = )(ARad / I   In particular, A / )(ARad  is a  -semi simple.                                                                                                                

 
Proof                                                                                                                                                                                

M  is a  -maximal ideal of A . We put A  = A / I  and   M = M / I . We have: I  )(ARad  

 M .  So from the following canonical isomorphism: A / M    A /M  which is   -simple, 

it follows that A / M  is a  -simple algebra. Consequently, M / I  is a   -ideal   -maximal 

of A / I . From where: 

)/( IARad  =   { M  : M  is  -maximal ideal  of A } 

                =   A  of  ideal maximal-   is M : M  

                                                                          = )(ARad  = )(ARad / I              

Now, we say that an algebra with involution ( A , ) is  -semi-simple if  A  is a sum of                          

 -minimal ideals of A .
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Lemma 1.1    Let A be a  -semi-simple algebra such that A = 
iI ∈ 
, where each 

iI  is a                  

 - minimal ideal of A. If P  is a  -minimal ideal of A, then there is a subset T of S  such 

that: )( jTj IPA          

 

Proof.   Since 
iI  are  -minimal and IP  , then there exists some Si  such that  PI i    is 

a direct sum.  Indeed, otherwise ii IPI   for all Si , which implies that AP  . 

Applying Zorn’s lemma, there is a subset T  of S  such that the collection { iI  : Ti }   { P } 

is maximal with respect to independence: PI jTj   )( = PI jTj   )( .                  

Setting B = PI jTj   )( , the maximality of T  implies that )0( BI i  for all Si . Then, 

the  -minimality of iI  yie lds that ii IBI   hence BI i   for a ll Si . Consequently 

AB  . 
 

Corollary1.1   For an algebra with involution ( ),A , the following conditions are 

equivalent: 

1) A is a  -semi-simple. 

2) A is a direct sum of  -minimal ideals 

 

Example.1.2 Let 
4A be the alternating group on 4 letters. Consider the group algebra  IR

[
4A ] provided with its canonical involution σ defined by:  

1

44

)( 

   grgr
Ag gAg g           
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F r o m[ 1 ] ,  the decomposition  of the semi-simple algebra IR [
4A ] into a direct  sum of 

simple components is as follows:   3214 BBBAIR  , where each Bi  is invariant 

under  σ. More explicitly,  IRB 1
,  CB 2

, a nd  )(33 IRMB  . In particular, each 
iB

is a          σ-minimal  ideal of IR [
4A ].  Consequently, IR [

4A ]. is a σ-semi-simple 

algebra. 

 
Now, let A be a  - A -simple algebra. Since A is finitely generated (indeed, 1 generates A), 

then A has a finite length. Thus i

l

i IA 1 , where each iI is a  -minimal ideal of A. It is 

easy to verify that each iI is generated by a central symmetric idempotent element Aei 

(i.e: ii ee 
2

and  ( ii ee ) ), where  


l

i ie
1

1 . Moreover, 0jiee for all ji  . In what 

follows, we denote by S  the set of central symmetric orthogonal idempotents of A , i.e. 

 leeS .......1  such that ii AeI  . 

 

Let i

l

i IA 1 be a  -semi-simple algebra, we have already seen that each iI is generated 

by a central symmetric idempotent ie such that  


l

i ie
1

1 . Hence, iI is a subalgebra of A 

with unity ie . Moreover, iI is a  -simple algebra for all li 1 . Consequently, every  -

semi-simple algebra is a direct sum of  -simple algebras. 

 

Automatic Continuity 

A derivation D  on algebra A  is linear mapping from A  to itself satisfying 

)()()( yxDyxDxyD  for all  Ayx ,  

 Let D  a derivation of a Banach space X. Then, the separating ideal )(D of X is the subset 

of X defined by:    )(D   = { 0:)(/  nnn xXxXy  and })( yxD n                                        

 

Lemma 2.1 [6] 

Let S be a linear operator from a Banach  space X into a Banach space Y . Then; 

i) )(S is a closed linear space of Y  

ii) S is continuous if only if )(S ={0} and 

iii) If T and R are continuous linear operators on X and Y respectively, and if 

RSST  , then )()( SSR    

 

Lemma 2.2 [6] 

Let S be a linear operator from a Banach space X into a Banach space Y , and let R  be a 

continuous operator from Y into a Banach space Z . Then: 

i) RS  is continuous if and if  0)( SR . 

ii) )()( RSSR   , and 

iii) There is a constant M (independent of R and Z ) such that if RS is continuous then

RMRS   

 

Proposition 2.1   Let A be a Banach  -algebra A , then a  -maximal  -ideal  M of A  is 
closed.                                                                                                                                                                                     
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Proof                                                                                                                                                                                      

If M is a maximal ideal of A , then M  is closed,. Otherwise, if M not Maximal, there is a 

maximal ideal N  of A  such that   M  = N    ( N ) (proposition 1.4 ). Since N  (resp.  (

N )) is closed, it is deduced that M is closed in A    
 

Proposition 2.2   Let A a Simple Banach algebra. Then all dérivation  D  on A   is continuous. 
Proof 

Let   ( D ) the separator ideal of D  in A is simple, so   ( D ) = { 0 } or   ( D ) = A . If   (

D ) = A , that 
Ae    (D), cconsequently 0 Sp (

Ae ) ([6] theorem 6-16). From where  ( D ) 

= { 0 }. And by Lemma 2.1, as a result, D  is continuous  
 

Theorem 2.1 

Let A a  -Simple Banach  -algebra . Then all dérivation  D  on A   is continuous. 

 

Proof  We have A  is an algebra  simple, there exists simple unital subalgebra I of A  such 

that :                  A = I   ( I ) (Proposition 1.3);  following algebraic isomorphism: I   A /

 ( I ), one deduces that I  am a maximal ideal of A  . From where I  (resp;  ( I )) is closed 

in A . Consequently, the algebra A / I  (resp; A / ( I )) is a simple Banach  -algebra. Since 

I  is an ideal of A , then so is IID )( ; therefor IID )( / I  is an ideal of A / I . As A / I is a 

simple algebra, so                   IID )( / I = {


0 } or IID )( / I = A / I . Since I I is a 

maximal ideal of A , then IID )( = I , so  IID )( .   Consider the function D
~

on A / I

defined by: D
~

IaDIa  )()( .                                                          We show that is a 

derivation on A / I . Note that it is easy to show D
~

is linear operator. Moreover, for ba, A , 

D
~

))(( IbIa  )= D
~

)( Iab )= IabD )( = IbaDbaD  )()( .                                           

But then, ( )Ia  D
~

)( Ib  + D
~

( )Ia  ( )Ib   = ( )Ia  ( ))()(())( IbIaDIbD  = 

IbaDbaDIbaDIbaD  )()()()( . So D
~

is a derivation on the simple Banach 

algebra A / I , then by proposition 2.2, D
~

is continuous.  To show that D  is continuous, 

consider the canonical surjection IAA /:  ; Iaa  which is continuous. To show 

that D  is continuous, we observe first that  o D = D
~

o  because for every a A , we have 

 o )(aD  =  ( )(aD ) = IaD )( and D
~
 ( a )= D

~
( )Ia   = IaD )( .  Since D

~
o is 

continuous, then; we have  ( D
~

o  ) = {


0 }, And    )(D =  ( )
~
D  = {



0 } (Lemma 2.2) 

and this implied that ID )( . Following the same steps, we show that )()( ID   , then 

 0)()(  IID  . Therefore D  is continuous (lemma 2.1).  

 

Theorem 2.2 

Let A a  -semi--Simple Banach  -algebra . Then all dérivation  D  on A   is continuous. 

 

Proof 

Since A is a  -semi-simple algebra, writing  (by lemma 1.1) i

l

i IA 1 where iI is a  -

minimal ideal of A  and setting jiji IL  , then li 1 iL   is a  -maximal ideal of A . 

If iL  is a maximal ideal, then ii LLD )(  If iL is not maximal, then by proposition 1.4,  that 

exist a maximal ideal iN such that li 1 , iii NNL *  . Consequently, 



European Journal of Mathematics and Computer Science  Vol. 4 No. 1, 2017 
  ISSN 2059-9951 
 

Progressive Academic Publishing, UK Page 62  www.idpublications.org 

iiiiiiii LNNNDNDNNDLD  )())(()())(()(  li 1  .  Now, consider 

the function D
~

on A / I defined by: li 1  D
~

ii LaDLa  )()( . Since a  -maximal 

ideal is closed (proposition (2.1) and as mentioned in theorem (2.1), we have D
~

is a 

derivation on the  -simple Banach algebra A /
iL  . then by theorem 2.1, we have D

~
is 

continuous. Consider the canonical surjection
ILAA /:  ; iLaa  which is continuous. 

To show that D  is continuous, we observe first that  o D = D
~

o  because for every a A , 

we have  o )(aD  =  ( )(aD ) = iLaD )( and D
~
 ( a )= D

~
( )iLa   = iLaD )( .  Since D

~

o is continuous, then; we have  ( D
~

o  ) = {


0 }, And    )(D =  ( )
~
D  = {



0 } and this 

implied that iLD )( li 1 . Thus implied that  .0)( 1   i

l

i LD  Consequently, D is 

continuous  
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