FINDING THE MOMENTS OF GENERAL QUADRATIC FORM WITH APPLICATION TO DATA CLASSIFICATION

William W.S. Chen
Department of Statistics
The George Washington University
Washington D.C. 20013

Abstract

We assume a random sample of size k of general quadratic form has been drawn. We wish to find the first four moments of their more general formula. Later, we use these moments to classify a randomly observed vector to one of the two multivariate normal distributions. We also give out the probability of our decision correctly or incorrectly in this classification. As the concluding remark, we give two real life examples that have been published in literature. Kendall and Stuart [1] discussed the case when $\mathrm{k}=2$. Anderson T.W.[2] has a whole chapter 6 discussing the classification of the column vector problem.

Keywords: Characteristic Function, Cumulant Generating Function, Data Classification, First Four Moments, General Quadratic Form, Multivariate Normal Distribution, Real Life Examples.

INTRODUCTION

We assume a random sample of size k of quadratic form has been drawn from multivariate normal distribution. We are interested in finding the first four moments of these quadratic forms. However, this may involve many matrix operations. For example, we cannot operate two column vectors of different sizes or two matrices that are not conformable. We need to carefully define our notation or symbols. In this paper, we define our column vector with bar under-score, such as \underline{x} and corresponding row vector with a prime on the top-right corner, such as \underline{x}^{\prime}. We should be aware of the fact that if an expression starts with a row vector and ends with a column vector, then it always represents a scalar. With respect to the scalar, we may differentiate or integrate as many times as we wish, when it exists. The problem of classification arises when a researcher makes a number of measurements on an individual and wishes to classify the individual into one of several categories on the basis of these measurements. A researcher cannot identify the individual with a category directly, but must use these measurements. We usually assume that there are a finite number of populations from which the individual may have come from. We may also assume that each population has been characterized by a probability distribution of the measurements. Thus, an individual is considered as a random observation from this population. Then the question turns out to be: "given an individual with certain measurements, how do we classify this person?" In this paper, we only consider the case where two populations are admitted; hence we may test one hypothesis of a specified distribution against another. If there is a quota between the populations, it is also possible to create such a test. As the concluding remark, we have given two real-life examples to demonstrate this problem.

Distribution of the Quadratic Forms

Let Q_{j} is an arbitrary symmetric matrix. Let column vector \underline{X} has multivariate normal distribution with mean vector $\underline{\mu}$ and variance-covariance matrix Σ. Then $q_{j}=\underline{X} Q \underline{X}$ has quadratic form. We will find the characteristics function of the joint distribution of $q_{1}, q_{2}, q_{3}, \ldots . q_{k}$. In general, we may assume $q_{j}=\left(\underline{x}-\underline{\mu_{j}}\right)^{\prime} Q_{j}\left(\underline{x}-\underline{\mu_{j}}\right)$; and hence;

$$
\begin{aligned}
& \Psi_{q_{1}, q_{2}, \ldots q_{k}},\left(t_{1}, t_{2}, \ldots . t_{k}\right)=E\left[e^{i t_{1} q_{1}+i t_{2} q_{2}+\ldots \ldots .+i t_{k} q_{k}}\right]=E\left[e^{i i_{s u m t_{j} q_{j}}^{j=1}}\right] \\
& =\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \int \ldots . . . \int e_{j=1}^{i s u m t_{j} q_{j}-\frac{1}{2}(\underline{x}-\underline{\mu})^{\prime} \Sigma^{-1}(\underline{x}-\underline{\mu})} d \underline{x}
\end{aligned}
$$

Consider the exponential part alone;

$$
\text { Assume } v_{t}^{-1}=\Sigma^{-1}-2 i \operatorname{Sumt}_{j=1}^{k} Q_{j} \quad \text { and } \underline{\beta_{t}}=v_{t}^{-1} \underline{\mu}=\Sigma^{-1} \underline{\mu}-2 i \underset{j=1}{\operatorname{Sumt}_{j}} Q_{j} \underline{\mu_{j}}
$$

$$
c=\underline{\mu^{\prime}} \Sigma^{-1} \underline{\mu}-2 i \underset{j=1}{S_{j=1}^{k}} \underline{\mu}_{j}^{\prime} \underline{Q_{j}} Q_{j} \underline{\mu_{j}} \text { awarethatv }_{0}^{-1}=\Sigma^{-1} \text { and } \underline{\beta_{0}}=\Sigma^{-1} \underline{\mu}
$$

Exponential can be written as; $\underset{j=1}{\operatorname{sum}_{j=1}^{k}}\left(\underline{x}-\underline{\mu_{j}}\right)^{\prime} Q_{j}\left(\underline{x}-\underline{\mu_{j}}\right)-\frac{1}{2}(\underline{x}-\underline{\mu})^{\prime} \Sigma^{-1}(\underline{x}-\underline{\mu})$

$$
\begin{aligned}
& =-\frac{1}{2} \underline{x}^{\prime} v^{-1} \underline{x}+\frac{1}{2} \underline{x^{\prime}} \beta+\frac{1}{2} \underline{\beta^{\prime} x}-\frac{1}{2} c \\
& =-\frac{1}{2}(\underline{x}-\underline{v \beta})^{\prime} v^{-1}(\underline{x}-\underline{v \beta})+\frac{1}{2} \underline{\beta^{\prime} v \beta}-\frac{1}{2} c
\end{aligned}
$$

Finally, the joint characteristic function is:

$$
\begin{aligned}
& \Psi_{q_{1} q_{2} \ldots q_{k}}\left(t_{1}, t_{2}, \ldots t_{k}\right)=\frac{1}{(2 \pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}} e^{\frac{1}{2} \frac{\beta^{\prime} v \beta-\frac{1}{2} c}{} \int \ldots . \int \exp \left[-\frac{1}{2}(\underline{x}-\underline{v \beta})^{\prime} v^{-1}(\underline{x}-\underline{v \beta})\right] d x} \\
& =\frac{(2 \pi)^{\frac{p}{2}}|v|^{\frac{1}{2}}}{(2 \pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left[\frac{1}{2} \frac{\beta^{\prime} v \beta}{}-\frac{1}{2} c\right]
\end{aligned}
$$

$$
\begin{aligned}
& \underset{j=1}{k}{ }_{j=1}^{k} t_{j} q_{j}-\frac{1}{2}(\underline{x}-\underline{\mu})^{\prime} \Sigma^{-1}(\underline{x}-\underline{\mu})
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{2} \underline{x^{\prime}}\left[\Sigma^{-1}-2 \underset{j=1}{\left.\operatorname{Sumt}_{j=1}^{k} Q_{j}\right] \underline{x}-\frac{1}{2} \underline{x^{\prime}}\left[-\Sigma^{-1} \underline{\mu}+2 \underset{j=1}{\operatorname{Sumt}_{j=1}^{k}}{ }_{j} Q_{j} \underline{\mu_{j}}\right]}\right. \\
& -\frac{1}{2}\left[-\underline{\mu^{\prime}} \Sigma^{-1}+2 i \underset{j=1}{\operatorname{Sum} t_{j}} \underline{\mu_{j}^{\prime}} Q_{j}\right] \underline{x}-\frac{1}{2}\left[\underline{\mu^{\prime}} \Sigma^{-1} \underline{\mu-2 i} \underset{j=1}{k} \operatorname{Sum}_{j} \underline{\mu}_{j}^{\prime} Q_{j} \underline{\mu_{j}}\right]
\end{aligned}
$$

$K_{q}\left(t^{\prime}\right)=\ln \Psi\left(t_{1} \ldots t_{k}\right)=\frac{1}{2} \ln |v|-\frac{1}{2} \ln |\Sigma|+\frac{1}{2} \underline{\beta^{\prime} v \beta}-\frac{1}{2} \underline{\mu^{\prime} \Sigma^{-1}} \underline{\mu}+i \underset{j=1}{\operatorname{Sum} t_{j}} \underline{\mu_{j}^{\prime}} Q_{j} \underline{\mu_{j}}$
where $v_{t}=\left[\Sigma^{-1}-2 \underset{j=1}{\operatorname{Sumt}_{j}^{k}} Q_{j}\right]^{-1}, \underline{\beta_{t}}=\left[\Sigma^{-1} \underline{\mu}-2 i \underset{j=1}{\operatorname{Sumt}_{j=1}}{ }_{j} Q_{j} \underline{\mu_{j}}\right]$
$v_{0}^{-1}=\Sigma^{-1} \quad v_{0}=\Sigma$ at $t=0$ and $\underline{\beta_{0}}=\Sigma^{-1} \underline{\mu}$
$K\left(0^{\prime}\right)=\frac{1}{2} \ln |\Sigma|-\frac{1}{2} \ln |\Sigma|+\frac{1}{2} \underline{\mu}^{\prime} \Sigma^{-1} \underline{\mu}-\frac{1}{2} \underline{\mu}^{\prime} \Sigma^{-1} \underline{\mu}=0$

$\frac{\partial \underline{\beta}}{\partial t_{j}}=-2 i Q_{j} \underline{\mu_{j}} ; \quad \frac{\partial v^{-l}}{\partial t_{j}}=-2 i Q_{j} ;$
$\frac{\partial K}{\partial t_{j}}=\frac{1}{2} \operatorname{tr}\left[v^{-1}\left(2 i v Q_{j} v\right)\right]+\frac{1}{2}\left(-2 i \underline{\mu_{j}^{\prime}} Q_{j} v \underline{\beta}\right)+\frac{1}{2} \underline{\beta^{\prime}}\left(2 i v Q_{j} v\right) \underline{\beta}$
$+\frac{1}{2} \underline{\beta^{\prime}} v\left(-2 i Q_{j} \mu_{j}\right)+i \underline{\mu_{j}^{\prime}} Q_{j} \underline{\mu_{j}}$
$=i \operatorname{tr} Q_{j} v-i \underline{\mu_{j}^{\prime}} Q_{j} v \underline{\beta}+i \underline{\beta^{\prime}} v Q_{j} v \underline{\beta}-i \underline{\beta} \underline{\beta}^{\prime} v Q_{j} \underline{\mu_{j}}+i \underline{\mu_{j}^{\prime}} Q_{j} \underline{\mu_{j}}$
$=\operatorname{itr}\left(Q_{j} v\right)+i\left(\underline{v \beta-\mu_{j}}\right)^{\prime} Q_{j}\left(\underline{v \beta-\mu_{j}}\right)$
Assume $\underline{\gamma_{j}}=-v \underline{\beta}+\underline{\mu_{j}}$ then $\underline{\gamma_{0}}=-\Sigma \Sigma^{-1} \underline{\mu}+\underline{\mu_{j}}=\underline{\mu_{j}-\mu}$
$\frac{\partial K}{\partial t_{j}}=i t r Q_{j} v+i \underline{\gamma_{j}^{\prime}} Q_{j} \underline{\gamma_{j}}$ att $=0$ we have
$\left.\frac{\partial K}{\partial t_{j}}\right|_{t=0}=i \operatorname{tr} Q_{j} \Sigma+i \underline{\gamma_{0}^{\prime}} Q_{j} \underline{\gamma_{0}}=i\left[\operatorname{tr} Q_{j} \Sigma+\left(\underline{\mu_{j}-\mu}\right)^{\prime} Q_{j}\left(\underline{\left.\mu_{j}-\mu\right)}\right]\right.$
i.e first cumulantof q_{j}

$$
\begin{aligned}
&\left.\frac{\partial K}{\partial t_{j}}\right|_{t=0}=E\left(q_{j}\right)=\operatorname{tr} Q_{j} \Sigma+\left(\underline{\mu_{j}-\mu}\right)^{\prime} Q_{j}\left(\underline{\mu_{j}-\mu}\right) \\
& \frac{\partial \gamma_{j}}{\partial t_{k}}=-\frac{\partial v}{\partial t_{k}} \underline{\beta}-v \frac{\partial \beta}{\partial t_{k}}=-2 i v Q_{k} v \underline{\beta}+2 i v Q_{k} \underline{\mu_{k}}=2 i v Q_{k} \underline{\gamma_{k}} \\
& \frac{\partial \gamma_{j}}{\partial t_{k}}=2 i v Q_{k} \underline{\gamma_{k}} \\
& \frac{\partial^{2} K}{\partial t_{j} \partial t_{k}}=i \operatorname{itr} Q_{j}\left(2 i v Q_{k} v\right)+i\left(2 i \underline{\gamma_{k}^{\prime}} Q_{k} v Q_{j} \underline{\gamma_{j}}\right)+i \underline{\gamma_{j}^{\prime}} Q_{j}\left(2 i v Q_{k} \underline{\gamma_{k}}\right) \\
&=-2 \operatorname{tr} Q_{j} v Q_{k} v-\underline{\gamma_{k}^{\prime}} Q_{k} v Q_{j} \underline{\gamma_{j}}-2 \underline{\gamma_{j}^{\prime}} Q_{j} v Q_{k} \underline{\gamma_{k}}
\end{aligned}
$$

$\operatorname{Cov}\left(q_{j}, q_{k}\right)=\left(\right.$ coefficient of $-i^{2}$ in $\frac{\partial^{2} K}{\partial t_{j} \partial t_{k}}$ at $\left.t=0\right)$
$=2 \operatorname{tr} Q_{j} \Sigma Q_{k} \Sigma+4\left(\underline{\mu_{j}-\mu}\right)^{\prime} Q_{j} \Sigma Q_{k}\left(\underline{\mu_{k}-\mu}\right)$

$$
\begin{aligned}
\frac{\partial^{2} K}{\partial t_{j} \partial t_{k}} & =-2 \operatorname{tr} Q_{j} v Q_{k} v-4 \underline{\gamma_{j}^{\prime}} Q_{j} v Q_{k} \underline{\gamma_{k}} \\
\frac{\partial^{3} K}{\partial t_{j} \partial t_{k} \partial t_{l}} & =-4 i \operatorname{tr} Q_{j} v Q_{l} v Q_{k} v-4 i \operatorname{tr} Q_{j} v Q_{k} v Q_{l} v-8 i \underline{\gamma_{j}^{\prime}} v Q_{k} v \underline{\gamma_{l}} \\
& -8 i \underline{i} \underline{\gamma}_{j}^{\prime} v Q_{l} v \underline{\gamma_{k}}-8 i \underline{\gamma_{k}^{\prime}} v Q_{j} v \underline{\gamma_{l}}
\end{aligned}
$$

Suppose $k=1 \quad q=\left(\underline{x-\mu_{1}}\right)^{\prime} Q_{1}\left(\underline{x-\mu_{1}}\right)$ where $Q_{1}=\Sigma^{-1}=(\operatorname{var}(x))^{-1}$

$$
=\left(\underline{x-\mu_{1}}\right)^{\prime} \Sigma^{-1}\left(\underline{x-\mu_{1}}\right)
$$

Let $\underline{x} \sim N\left(\underline{\mu_{1}}, \Sigma\right)$ also suppose $\underline{x} \sim N\left(\underline{\mu_{2}}, \Sigma\right)$
q has noncentral $\chi_{(p)}^{2}$ distribution with noncentral parameter
$\left(\underline{\mu_{1}-\mu_{2}}\right)^{\prime} \Sigma^{-1}\left(\underline{\mu_{1}-\mu_{2}}\right)=\delta_{\pi_{1} \pi_{2}}^{2}$
$E(q)=\operatorname{tr} \Sigma Q+\left(\underline{\mu_{1}-\mu}\right)^{\prime} Q\left(\underline{\mu_{1}-\mu}\right)$ in this case $\mu=\mu_{2}$ and $Q=\Sigma^{-1}$
$E(q)=p+\left(\underline{\mu_{1}-\mu_{2}}\right)^{\prime} \Sigma^{-1}\left(\underline{\mu_{1}-\mu_{2}}\right)=p+\delta^{2}$
$\operatorname{Var}(q)=2 \operatorname{tr}(Q \Sigma)^{2}+4\left(\underline{\mu_{1}-\mu_{2}}\right)^{\prime} Q \Sigma Q\left(\underline{\mu_{1}-\mu_{2}}\right)=2 p+4 \delta^{2}$
$K_{3}(q)=8 p+24 \delta^{2} ; \quad K_{4}(q)=48 p+192 \delta^{2} ;$
in general; $K_{r}(q)=2^{r-1}(r-1)!\left[p+r \delta^{2}\right]$.
The above result due to Lancaster.

APPLICATION IN CLASSIFICATION

Assume column vector \underline{X} comes from population , π_{1}, or from , π_{2}, then If \underline{X} from population 1 then $\ln L\left(\underline{X} / \pi_{l}\right)$ would be the likelihood. If \underline{X} from population 2 then $\ln L\left(\underline{X} / \pi_{2}\right)$ would be the likelihood. Our objective is to classify \underline{X} as belonging to which population for which $\ln L(\underline{X})$ is larger.
$R_{I}=\left\{x: \ln L\left(x \mid \pi_{1}\right)>\ln L\left(x \mid \pi_{2}\right)\right\}$ then we make decision D_{1} and assignto π_{1}.
$R_{2}=\left\{x: \ln L\left(x \mid \pi_{1}\right)<\ln L\left(x \mid \pi_{2}\right)\right\}$ then we make decision D_{2} and assignto π_{2}.
$\pi_{1} \sim N\left(\mu_{1}, \Sigma\right) ; \quad \pi_{2} \sim N\left(\mu_{2}, \Sigma\right) ;$
$\ln L\left(\underline{x} \mid \pi_{l}\right)=-\frac{p}{2} \ln (2 \pi)-\frac{1}{2} \ln |\Sigma|-\frac{1}{2}\left(\underline{x-\mu_{1}}\right)^{\prime} \Sigma^{-1}\left(\underline{x-\mu_{1}}\right)$
$\ln L\left(\underline{x} \mid \pi_{2}\right)=-\frac{p}{2} \ln (2 \pi)-\frac{1}{2} \ln |\Sigma|-\frac{1}{2}\left(\underline{x-\mu_{2}}\right)^{\prime} \Sigma^{-1}\left(\underline{x-\mu_{2}}\right)$
$u=\ln L\left(x \mid \pi_{1}\right)-\ln L\left(x \mid \pi_{2}\right)$
$=-\frac{1}{2}\left(\underline{x-\mu_{1}}\right)^{\prime} \Sigma^{-1}\left(\underline{x-\mu_{1}}\right)+\frac{1}{2}\left(\underline{x-\mu_{2}}\right)^{\prime} \Sigma^{-1}\left(\underline{x-\mu_{2}}\right)$
whereclassification statistics u make decision D_{1} if $u>0$
$u=-\frac{1}{2} \underline{x}^{\prime} \Sigma^{-1} \underline{x}+\underline{\mu_{1}^{\prime}} \Sigma^{-1} \underline{x}-\frac{1}{2} \underline{\mu_{1}^{\prime}} \Sigma^{-1} \underline{\mu_{1}}+\frac{1}{2} \underline{x^{\prime}} \Sigma^{-1} \underline{x}-\underline{\mu_{2}^{\prime}} \Sigma^{-1} \underline{x}+\frac{1}{2} \underline{\mu_{2}^{\prime}} \Sigma^{-1} \underline{\mu_{2}}$

$$
\begin{aligned}
& =\left(\underline{\mu_{1}^{\prime}-\mu_{2}^{\prime}}\right) \Sigma^{-1} \underline{x}-\frac{1}{2} \underline{\mu_{1}^{\prime}} \Sigma^{-1} \underline{\mu_{1}}+\frac{1}{2} \underline{\mu_{2}^{\prime}} \Sigma^{-1} \underline{\mu_{2}} \\
& =\left(\underline{\mu_{1}^{\prime}-\mu_{2}^{\prime}}\right) \Sigma^{-1}\left(\underline{x}-\frac{1}{2}\left(\underline{\mu_{1}+\mu_{2}}\right)\right)
\end{aligned}
$$

Suppose $\underline{x} \sim N(\underline{\mu}, \Sigma)$ Let $\underline{y}=\left(\underline{x}-\frac{1}{2}\left(\underline{\mu_{1}+\mu_{2}}\right)\right) \sim N\left(\underline{\mu}-\frac{1}{2}\left(\underline{\mu_{1}+\mu_{2}}\right), \Sigma\right)$
Then $u=\left(\underline{\mu_{1}^{\prime}-\mu_{2}^{\prime}}\right) \Sigma^{-1} \underline{y}$
Hence: $E(u)=\left(\underline{\mu_{1}-\mu_{2}}\right)^{\prime} \Sigma^{-1}\left(\underline{\mu}-\frac{1}{2}\left(\underline{\left.\mu_{1}+\mu_{2}\right)}\right)\right.$
$\operatorname{var}(u)=\left(\underline{\mu_{1}-\mu_{2}}\right)^{\prime} \Sigma^{-1} \Sigma \Sigma^{-1}\left(\underline{\mu_{1}-\mu_{2}}\right) ;$
$u \sim N\left(\underline{\left.\mu_{1}-\mu_{2}\right)^{\prime} \Sigma^{-1}(\underline{\mu-\mu})}, \delta^{2}\right)$
where $\underline{\bar{\mu}}=\frac{1}{2} \underline{\left(\mu_{1}+\mu_{2}\right)} ; \quad \delta^{2}=\underline{\left(\mu_{1}-\mu_{2}\right)^{\prime}} \Sigma^{-1}\left(\underline{\left.\mu_{1}-\mu_{2}\right)}\right.$
$\operatorname{Pr}\left\{\right.$ classify \underline{x} as coming from π_{1} if, in fact,it does $\}$
$=\operatorname{Pr}\left\{u>0 \mid \underline{x} \in \pi_{1}\right)=\operatorname{Pr}\left(u>0 \mid \underline{\mu=\mu_{1}}\right)$
$=1-\phi\left(\frac{0-\frac{1}{2} \delta^{2}}{\delta}\right)=1-\phi\left(-\frac{1}{2} \delta\right)=\phi\left(\frac{1}{2} \delta\right)$
Since if $\underline{\mu=\mu_{1}}$ thenu $\sim N\left(\frac{1}{2} \delta^{2}, \delta^{2}\right)$ If the two populationare 1 standardunit away then $\operatorname{Pr}\left\{\right.$ correctclassifyinto $\pi_{1} \mid \pi_{l}$ is the true population $)=\phi\left(\frac{1}{2}\right) \approx 0.65$ $\operatorname{Pr}\left\{u<0 \mid \underline{\mu=\mu_{1}}\right\}=1-\operatorname{Pr}\left\{u>0 \mid \underline{\mu=\mu_{1}}\right\}=1-\phi\left(\frac{\delta}{2}\right)$
if $E(\underline{x})=\underline{\mu_{2}}$ then $u \sim N\left(-\frac{\delta^{2}}{2}, \delta^{2}\right) \quad \operatorname{Pr}\left\{u<0 \mid \mu=\mu_{2}\right\}=\phi\left(\frac{0+\frac{\delta^{2}}{2}}{\delta}\right)=\phi\left(\frac{\delta}{2}\right)$
$\operatorname{Pr}\left\{u>0 \mid \mu=\mu_{2}\right\}=1-\operatorname{Pr}\left\{u<0 \mid \mu=\mu_{2}\right\}=1-\phi\left(\frac{\delta}{2}\right)$
we summaryaboveresult

$$
\begin{array}{ccc}
& \pi_{l} & \pi_{2} \\
D_{1} & \phi\left(\frac{\delta}{2}\right) & 1-\phi\left(\frac{\delta}{2}\right) \\
D_{2} & 1-\phi\left(\frac{\delta}{2}\right) & \phi\left(\frac{\delta}{2}\right)
\end{array}
$$

Let q_{1} denote the prior probability that \underline{X} comes from π_{l},
$q_{2}=1-q_{1}$ that \underline{X} come from π_{2}. Our decision rule is optimal only if $q_{1}=q_{2}=\frac{1}{2}$ then $\operatorname{Pr}\{$ misclassification $\}=1-\phi\left(\frac{\delta}{2}\right)$
$q_{1}=$ Quota for population π_{1}. 1- $q_{1}=$ Quota for population π_{2}.
$R_{1}=\left\{\underline{x}: q_{1} L\left(\underline{x} \mid \pi_{1}\right)>q_{2} L\left(\underline{x} \mid \pi_{2}\right)\right\}$
If \underline{x} is observedin R_{l} and make decision D_{l} : classify \underline{x} as belongingto π_{r}.
$\operatorname{pr}\left\{\underline{x}: \log q_{1}+\log L\left(\underline{x} \mid \pi_{1}\right)-\log q_{2}-\log L\left(\underline{x} \mid \pi_{2}\right)>0\right\}$
$=\operatorname{Pr}\left\{\log L\left(\underline{x} \mid \pi_{1}\right)-\log L\left(\underline{x} \mid \pi_{2}\right)>\log \left(\frac{1-q_{1}}{q_{1}}\right)\right\}$
Assume $\pi_{1} \sim N\left(\underline{\mu_{1}}, \Sigma\right) ; \quad \pi_{2} \sim N\left(\underline{\mu_{2}}, \Sigma\right)$
if $E(\underline{x})=\underline{\mu_{1}}$ then $u \sim N\left(\frac{\delta^{2}}{2}, \delta^{2}\right)$; if $E(\underline{x})=\underline{\mu_{2}}$ thenu $\sim N\left(-\frac{\delta^{2}}{2}, \delta^{2}\right)$
where $u=\left(\mu_{1}-\mu_{2}\right)^{\prime} \Sigma^{-1}\left(\underline{x}-\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)\right)$;
$\delta^{2}=\underline{\left(\mu_{1}-\mu_{2}\right)^{\prime}} \Sigma^{-1} \underline{\left(\mu_{1}-\mu_{2}\right)}$ and $\log \left(\frac{1-q_{1}}{q_{1}}\right)=c$
if $q_{1}<q_{2}$ thenc >0
$\operatorname{Pr}\left\{x \in R_{l} \mid \pi_{l}\right\}=\operatorname{Pr}\left\{u>c \mid \pi_{l}\right\}=1-\operatorname{Pr}\left\{u<c \mid \pi_{l}\right\}=1-\phi\left(\frac{c-\frac{\delta^{2}}{2}}{\delta}\right)=\phi\left(\frac{\delta}{2}-\frac{c}{\delta}\right)$
$\operatorname{Pr}\left\{x \in R_{2} \mid \pi_{2}\right\}=\operatorname{Pr}\left\{u<c \mid \pi_{2}\right\}=\phi\left(\frac{c+\frac{\delta^{2}}{2}}{\delta}\right)=\phi\left(\frac{\delta}{2}+\frac{c}{\delta}\right)$
$\operatorname{Pr}\{$ Misclassification $\}=\phi\left(-\frac{\delta}{2}-\frac{c}{\delta}\right)+\phi\left(\frac{c}{\delta}-\frac{\delta}{2}\right)$
choosec such that max\{ $\left.\phi\left(-\frac{\delta}{2}-\frac{c}{\delta}\right), \phi\left(\frac{c}{\delta}-\frac{\delta}{2}\right)\right\}$ is minimized
Clearlyc $=0$ then $q_{1}=q_{2}$ mini- max decision.
State of natureas follow:

$$
\begin{array}{ccc}
& \pi_{1} & \pi_{2} \\
D_{1} & \phi\left(\frac{\delta}{2}-\frac{c}{\delta}\right) & \phi\left(-\frac{\delta}{2}-\frac{c}{\delta}\right) \\
D_{2} & \phi\left(\frac{c}{\delta}-\frac{\delta}{2}\right) & \phi\left(\frac{\delta}{2}+\frac{c}{\delta}\right)
\end{array}
$$

CONCLUDING REMARKS

At the end, we give two real life examples to demonstrate how to apply our results to solve a real-life problem. Example 1. Rao C.R. [3] considered three populations, the Brahmin, Artison, and Korwa castes of India. He assumed that each of these populations could be characterized by four characters - stature $\left(x_{1}\right)$, sitting height $\left(x_{2}\right)$, nasal depth $\left(x_{3}\right)$, and nasal height $\left(x_{4}\right)$ - of each member of the population. On the basis of sample observations on these characters from these three populations, the problem is to classify an individual with observation $\underline{x}^{\prime}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\prime}$ into one of the three populations. Rao C.R. used a linear discriminator to obtain this solution.

Example 2. On a patient with a diagnosis of myocardial infarction, observation on his systolic blood pressure (x_{1}), diastolic blood pressure (x_{2}), heart rate (x_{3}), stroke index (x_{4}), and mean arterial pressure (x5) are taken. On the basis of these observations, it is possible to predict whether or not the patient will survive.

REFERENCES

[1] Kendall, M. and Stuart, A. (1978) The Advanced Theory of Statistics. Vol. 2. 4th edition. Macmillan publishing Company, Inc.
[2] Anderson, T.W.(1984) An Introduction to Multivariate Statistical Analysis. Second Edition. John Wiley \& Sons, Inc.
[3] Rao, C.R.(1948) The utilization of multiple measurements in problem of biological classification. J.R. Statistical Society B10 : 159-203.

