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ABSTRACT 

 

We assume a random sample of size k of general quadratic form has been drawn. We wish to 

find the first four moments of their more general formula. Later, we use these moments to 

classify a randomly observed vector to one of the two multivariate normal distributions. We 

also give out the probability of our decision correctly or incorrectly in this classification. As 

the concluding remark, we give two real life examples that have been published in literature. 

Kendall and Stuart [1] discussed the case when k=2. Anderson T.W.[2] has a whole chapter 6 

discussing the classification of the column vector problem. 

 

Keywords: Characteristic Function, Cumulant Generating Function, Data Classification, 

First Four Moments, General Quadratic Form, Multivariate Normal Distribution, Real Life 

Examples. 

 

INTRODUCTION 

 

We assume a random sample of size k of quadratic form has been drawn from multivariate 

normal distribution. We are interested in finding the first four moments of these quadratic 

forms. However, this may involve many matrix operations. For example, we cannot operate 

two column vectors of different sizes or two matrices that are not conformable. We need to 

carefully define our notation or symbols. In this paper, we define our column vector with bar 

under-score, such as x  and corresponding row vector with a prime on the top-right corner, 

such as 'x . We should be aware of the fact that if an expression starts with a row vector and 

ends with a column vector, then it always represents a scalar. With respect to the scalar, we 

may differentiate or integrate as many times as we wish, when it exists. The problem of 

classification arises when a researcher makes a number of measurements on an individual and 

wishes to classify the individual into one of several categories on the basis of these 

measurements. A researcher cannot identify the individual with a category directly, but must 

use these measurements. We usually assume that there are a finite number of populations 

from which the individual may have come from. We may also assume that each population 

has been characterized by a probability distribution of the measurements. Thus, an individual 

is considered as a random observation from this population. Then the question turns out to be: 

“given an individual with certain measurements, how do we classify this person?” In this 

paper, we only consider the case where two populations are admitted; hence we may test one 

hypothesis of a specified distribution against another. If there is a quota between the 

populations, it is also possible to create such a test. As the concluding remark, we have given 

two real-life examples to demonstrate this problem.       
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Distribution of the Quadratic Forms 

 

Let jQ  is an arbitrary symmetric matrix. Let column vector  X  has multivariate normal 

distribution with mean vector   and variance-covariance matrix  . Then XQXq '
j   has 

quadratic form. We will find the characteristics function of the joint distribution of 

.q,....q,q,q k321  In general, we may assume );x(Q)x(q jj
'

jj    and hence;  
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Consider the exponential part alone; 
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Exponential can be written as; )x()x(
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Finally, the joint characteristic function is: 
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The above result due to Lancaster.  

 

APPLICATION IN CLASSIFICATION 

 

Assume column vector X  comes from population , 1 , or from , 2 , then If X  from 

population 1 then )/X(Lln 1  would be the likelihood . If X  from population 2 then 

)/X(Lln 2  would be the likelihood .  Our objective is to classify X  as belonging to which 

population for which )X(Lln  is larger. 
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CONCLUDING REMARKS 

 

At the end, we give two real life examples to demonstrate how to apply our results to solve a 

real-life problem. Example 1. Rao C.R. [3] considered three populations, the Brahmin, 

Artison, and Korwa castes of India. He assumed that each of these populations could be 

characterized by four characters – stature ( 1x ), sitting height ( 2x ), nasal depth ( 3x ), and 

nasal height ( 4x )- of each member of the population. On the basis of sample observations on 

these characters from these three populations, the problem is to classify an individual with 

observation 'x =( 1x , 2x , 3x , 4x )’ into one of the three populations. Rao C.R. used a linear 

discriminator to obtain this solution. 
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Example  2. On a patient with a diagnosis of myocardial infarction, observation on his 

systolic blood pressure ( 1x ), diastolic blood pressure ( 2x ), heart rate ( 3x ), stroke index ( 4x ), 

and mean arterial pressure (x5) are taken. On the basis of these observations, it is possible to 

predict whether or not the patient will survive. 
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