
European Journal of Engineering and Technology Vol. 4 No. 4, 2016
 ISSN 2056-5860

Progressive Academic Publishing, UK Page 11 www.idpublications.org

PLACEMENT AND DEFRAGMENTATION IN RECONFIGURABLE

 COMPUTING SYSTEMS

 Parag K. Lala

Department of Electrical

Engineering/ Texas A&M

University-Texarkana, USA

E-mail: plala@tamut.edu

ABSTRACT

This paper begins with a short discussion of the basic concepts of reconfigurable computing.

Configuration is the process of programming a field-programmable gate array (FPGA) device

for implementing a certain logic function. Configuration can be either static or dynamic. In

static configuration the FPGA device retains its configuration state till the task is completed.

In dynamic configuration the device is reconfigured repeatedly. In full reconfiguration the

previous configuration state of the device is erased completely and the entire device is

reconfigured. In partial reconfiguration only one part of the device is reconfigured while the

other parts continue their normal operations. The advantage of partially reconfigurable

devices is that they can retain more than one configuration provided the total size of these

configurations does not exceed the available hardware resources.

Keywords: FPGA, Reconfiguration, Run-time placement, Prefetching.

INTRODUCTION

Field Programmable Gate Arrays (FPGAs) comprise of a matrix of logic blocks and

interconnect network. Logic blocks and interconnect can be programmed to implement a

particular function by downloading configuration bits onto an FPGA using a process called

mapping. Because of their ability to provide high levels of performance and flexibility at the

same time, FPGAs are now extensively used in a wide variety of computing applications .

For example a reconfigurable computing system typically consists of one or more FPGAs

connected through programmable links, a processor and a memory. block (Fig.1). The

execution of a task is carried out by the FPGA and the processor performs all other

operations including the configuration of the FPGA. The memory block stores the

configuration data. Any function that is to be implemented by the reconfigurable system is

divided into several tasks. The configuration data corresponding to each task is stored in the

memory block

Fig. 1 A reconfigurable computing system

 Processor Memory

 FPGA

European Journal of Engineering and Technology Vol. 4 No. 4, 2016
 ISSN 2056-5860

Progressive Academic Publishing, UK Page 12 www.idpublications.org

FPGAs can be fine-grained or coarse-grained. In fine-grained FPGAs logic functions and

interconnections can be programmed at the bit-level. In coarse-grained FPGAs on the other

hand, logic functions can be programmed at the word level. The method of reconfiguring the

FPGA(s) in a reconfigurable system has to be considered in addition to the granularity of the

FPGA. Based on the methods of reconfiguration, an FPGA can be one of the following

three types: single context, multi-context and partially reconfigurable:

i. Single context FPGAs: The whole device is programmed via some of its input pins.

Typically it takes several milliseconds to program such a device. The major disadvantage

of this category is that even for any small change in configuration data a whole device

has to reconfigured. This type of devices are suitable only in applications where runtime

reconfiguration is not necessary.

ii.Multi-context FPGAs: The configuration mechanism for multi-context FPGAs is similar

to that of single-context FPGAs. Several configurations are stored in the FPGA, however

only one of them is active at any given time. The device can switch from one

configuration to another in one clock cycle (usually a few nanoseconds). Thus a multi-

context FPGA can be considered as a set of multiplexed single context FPGAs.

Configuration data can be loaded onto any of the single contexts provided it is inactive

during the system operation

iii. Partially reconfigurable FPGAs: In applications where only a small portion of the

configuration data need to be modified, partially reconfigurable FPGAs are more suitable

than single or multi-context FPGAs. In addition they are used in systems where runtime

reconfiguration is essential. The location of configuration data to be changed is identified

by the corresponding address.

Traditionally configuration information are loaded in FPGA devices in bit-serial

fashion . Partially reconfigurable FPGAs can be programmed selectively i.e. only certain

portions of the device can be modified . Two FPGA family such as Virtex series from

Xilinx and the AT6000 series from Atmel Corporation support partial reconfiguration. In

these devices the configuration information is loaded during the runtime in an addressable

manner; thus address information as well as configuration data need to be supplied to

such FPGAs. The advantage of partially reconfigurable FPGAs is that they can

accommodate more than one configuration provided the total size of the these

configurations does not exceed the available hardware resources. Additionally, in some

applications only a portion of the configuration data has to be changed because no changes

are necessary in the rest. For example in a filtering operation in signal processing

the circuit function does not change except some constant values need to be updated over

time [1].

In partially reconfigurable FPGAs tasks corresponding to an application can be replaced

with those for another application provided the new one does not overlap with the

configuration data of an already present application. In a dynamic environment the

sequence of tasks corresponding to an application is not known in advance. Thus tasks

are mapped onto a device when they arrive; this is known as run time placement. This

is also known as online placement or temporal placement, and plays a major role in

reconfigurable computing. The on-line placement is composed of the following two

tasks [2]:

European Journal of Engineering and Technology Vol. 4 No. 4, 2016
 ISSN 2056-5860

Progressive Academic Publishing, UK Page 13 www.idpublications.org

i. Locate all possible empty space blocks where the new task may be placed

 ii. Select the best block among them to place the task

LOCATION OF EMPTY AREAS ON FPGAS

Several techniques for finding empty areas for online placement have been proposed [3,4,5].

In these techniques the available space on an FPGA device is considered as a set of

rectangles; the tasks are also assumed to be of rectangular shape An incoming task is placed

in one of these rectangles based on the placement strategy. Once a task has been completed

it is removed from the FPGA and another one is mapped onto it. A drawback of this strategy

is that incoming tasks are considered as independent and communications among them are

ignored.

Different configurations that need to be loaded onto a partially programmable FPGA during

the system operation are stored in the memory block of the system. The time needed to load

data corresponding to a reconfiguration is known as the reconfiguration overhead. Since

the system processor must remain idle during the reconfiguration process the reconfiguration

overhead is a serious concern. The development of a placement algorithm that locates

empty space in an FPGA without incurring high reconfiguration overhead is extremely

important for the design of efficient dynamic reconfiguration system. A possible approach

to reduce reconfiguration overhead and thereby improve the speed of reconfiguration, is to

overlap a reconfiguration with the operation of the processor in the system; this approach is

known as configuration prefetching [6]. In order to maximize the overlap with the

computation of the system processor it is necessary to determine when to start a

reconfiguration. False prefetching of a configuration has to be avoided as well otherwise the

data corresponding to configuration that is next in sequence will be overwritten.

PLACEMENT TECHNIQUES

A placement technique aims to achieve one of the following objectives in order to reduce

reconfiguration overhead [7]

i. Reduce the configuration data needed to program the functional units and the

interconnections in the FPGA

ii. Reduce the number of reconfigurations neede

Reduction of Configuration Data

In many cases it may not be possible to use configuration prefetching to make the

reconfiguration process transparent. This may happen when multiple configurations have to

be loaded, one following another, onto an FPGA. In this situation the reconfiguration can be

reduced by compressing the configuration bits. As a result the system processor takes less

time to transfer the compressed reconfiguration bits to the FPGA. This approach is known

as configuration compression, and is based on the fact that the configuration bits are

highly redundant and hence no information loss results from compaction [8]. Several

algorithms have been proposed for compressing configuration [9,10]. The disadvantage of

compressed configuration is that additional circuits for decompression must be incorporated

on the FPGA. An alternative strategy is to avoid the reconfiguration of components that are

common to successive configuration. This strategy is particularly suitable for partially

reconfigurable devices, only part of a device that have different configuration values are

European Journal of Engineering and Technology Vol. 4 No. 4, 2016
 ISSN 2056-5860

Progressive Academic Publishing, UK Page 14 www.idpublications.org

reconfigured. Therefore if successive reconfigurations are selected such that their

differences are minimum, the reconfiguration time could be reduced [11].

Reduction of the Number of Reconfigurations

The number of required configurations can be reduced either by configuration relocation and

defragmentation or by configuration caching:

Configuration relocation and defragmentation approach is suitable only for partially

reconfigurable FPGAs. It allows a new configuration to be loaded onto the FPGA while

the ones that have already been loaded remain intact in their respective locations in the

device. Since only a portion of the device has to be reconfigured less amount of data has to

be transferred to the device, thereby resulting in the reduction of reconfiguration time.

A major contributing factor to the low area utilization in dynamically reconfigurable systems

is the fragmentation of the programmable resources in an FPGA [12]. Fragmentation does not

allow the transfer of configuration data for implementing a task or tasks even though the free

space is available in scattered fragments. The utilization of best allocation and replacement

techniques cannot prevent fragmentation to occur in reconfigurable systems over a period of

time. All the available fragments of empty space need to be consolidated into one block to

accommodate configuration data corresponding to a new task on such a system or to relocate

an existing one; this process is known as defragmentation. The empty space left on an FPGA

after some tasks have been placed on the FPGA, can be represented using a set of rectangles

known as empty rectangles [13] .

A technique for representing empty space in an FPGA using non-overlapping rectangles has

been proposed in Ref [5]. The drawback of this strategy is that if two reconfigurations are to

be placed at locations that partially overlap, then each time of one these configurations is

used the other one has to be removed; this will have a negative impact on the reconfiguration

time. A more efficient approach is to place a new configuration during runtime onto a part

of the FPGA that is unlikely to be used for some time

As configurations are loaded and unloaded the location of unoccupied space in a

partially reconfigurable device become fragmented over time. Consequently there could be

enough empty slots in a device but since the slots are scattered, an incoming task cannot

be accommodated in them. Therefore the mapping of a task into the device may overwrite

some of the valid configurations. It should be noted that the empty area in a device does

not give a measure of fragmentation; for example empty areas in two different states

of a device may be identical but the fragmentation in each state may be different [11] A

method for defragmentation that employs dynamic relocations of module positions during

runtime has been proposed in Ref.14; the main goal of the technique is to make the

contiguous free space as large as possible to fit in new modules.

An alternative approach for reducing the number of reconfigurations is configuration caching

[15]. Cache memory is a small amount of fast memory that is used in a general purpose

computing system. The system processor can access the cache memory much faster than

the main memory. It uses the cache memory to get and store information while the

cache reads from and write into the memory in spare time. This allows the processor to

operate at full speed most of the time. In a reconfigurable system an FPGA retains

configuration data on the device so that data transfers to it can be reduced. A major

European Journal of Engineering and Technology Vol. 4 No. 4, 2016
 ISSN 2056-5860

Progressive Academic Publishing, UK Page 15 www.idpublications.org

problem in configuration caching is to determine which configurations should be retained

on the chip and which one among these should be replaced during the reconfiguration

process.

So far not much has been published on the affect of defragmentation on reconfigurable

system performance [12]. Ref. [11] identifies a set of research issues that needs to be

investigated in order to understand the relationship between defragmentation, scheduling

and placement; some of the major issues are:

i. derive an accurate quantification and measurement of fragmentation on an FPGA

 device

ii. determine best time to perform fragmentation

iii. identify the area in the device that can be defragmented

iv. determine the place of defragmentation in the overall system architecture of

reconfigurable computing systems

CONCLUSIONS

The basic building block of most reconfigurable computing systems is field programmable

gate arrays (FPGAs). The capabilities of FPGA devices have experienced significant growth

in recent years primarily because of the inclusion of run-time partial reconfiguration feature

onto current SRAM-based FPGAs. This feature allows a new module to be placed on a

reconfigurable chip without interfering with the processing of other tasks being executed at

that time. During the past decade and a half several techniques have been developed for the

management of free spaces in reconfigurable systems. This paper discussed several of these

techniques; these techniques have major advantages over full reconfiguration approach.

However, as discussed in the paper several additional problems need to be addressed to

realize the full potential of partial reconfiguration feature in FPGAs.

REFERENCES

1. Compton, K. and Hauck, S, “Reconfigurable Computing : A survey of systems and

software”, ACM Computing Survey, Vol.34, No.2., pp. 171-210, June 2002

2. Ahmadinia, et.al. , “A new approach for on-line placement on reconfigurable

devices”, 18th International Parallel and Distributed Processing Symposium 26-30

April 2004, Santa Fe, New Mexico

3. Walder, H., Steiger, C., and P la tzner , H. , “ Fast online task placement on FPGAs,

free space partitioning and 2D hashing “, Proc. Parallel and Distributed Processing

Symposium, 2003.

4. Handa, M., and Vemuri, R., “An efficient algorithm for finding empty space for online

FPGA placement”, Design Automation Conf., June 2004.

5. Bazargan, K., Kastner, R., and Sarrafzadeh, M., "Fast template placement for

reconfigurable computing systems,", IEEE Design and Test of Computers, vol. 17, pp. 68-

83, January 2000.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8608
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8608

European Journal of Engineering and Technology Vol. 4 No. 4, 2016
 ISSN 2056-5860

Progressive Academic Publishing, UK Page 16 www.idpublications.org

6. Hauck, S., “ Configuration prefetch for single context reconfigurable coprocessors”,

ACM / SIGDA International Symp. On FPGAs, 1998.

7. Shoa, A. and Shirani,R., “Run-time Reconfigurable Systems For Digital Signal

Processing Applications: A Survey”, Jour. of VLSI Signal Processing, March 2005

8. Dandalis,A., and Prassana,V., “ Configuration compression for FPGA-based

embedded systems”, ACM/SIGDA Int.Symp.on FPGAs, pp.173-182, 2001.

9. Hauck, S., Li, Z, and Schwabe,E.,., ” Configuration compression for the Xilinx XC6200

FPGA,”IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems,vol. 18, Issue:8, pp. 1107-1113, 1999.

10. Turner et.al., ”A virtual hardware handler for RTR systems,” Proc. Seventh Annual

IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 262-263,

1999.

11. Ejnioui,A., and Demara,R ., “ Area reclamation strategies and metrics for SRAM-

based

 reconfigurable devices”, Proc.Intl.Conf. on Eng. of Reconfig. Systems and Algorithms”,

 Las Vegas, 2005

12. Gericota et.al. “Run-time management of logic resources on reconfigurable systems”.

2003 Design Automation and Test in Europe Conference and Exposition (DATE 2003), ,

Munich, Germany, March 2003

13. M. Handa and R.Vemuri, “ Area fragmentation in reconfigurable operating

systems”, Engineering of Reconfigurable Systems and Algorithms, June 2004.

14 Pekete et. al., “Dynamic defragmentation of reconfigurable devices”, ACM Trans .

Reconf igurable Technology and S ys tems,vol .5 .No .2 ,Art i c l e 8 , June 2012

15. Z. Li et. al., “Configuration caching techniques for FPGAs”, IEEE Symp. on

8th IEEE International Symposium on Field-Programmable Custom Computing Machines

April 17-19, 2000.

