ON THE DIOPHANTINE EQUATION $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{n}$

Sarita ${ }^{1}$, Hari Kishan ${ }^{2}$ \& Megha Rani ${ }^{3}$
${ }^{1}$ Department of Mathematics, DCR University, Murthal, Sonipat (Haryana), E-mail:sarita.malik1281@gmail.com
${ }^{2}$ Department of Mathematics, D.N. College, Meerut (U.P.), E-mail:harikishan10@rediffmail.com
${ }^{3}$ Department of Mathematics, RKGIT, Ghaziabad (U.P.), E-mail:meghar10@gmail.com

Abstract

In this paper, we have discussed the Diophantine equation $f(n)=n$ where n is a positive integer with digits more than 1 . Results have been obtained for number of digits of n as $2,3,4,5$ and 6 .

Keywords: Diophantine equation and integral solution.
Subject Classification: 11D45.

INTRODUCTION

Brian Miceli (2015) proposed problem of week as given below:
Given a positive, three-digit integer n, define $f(n)$ to be the sum of three digits of n, their three products in pairs and the product and all three digits. Find all positive three-digit integers n such that $f(n)=n$.
In this paper, we have extended the above problem by considering the Diophantine equation $f(n)=n$ where n is a positive integer with digits more than 1 . Results have been discussed for number of digits of n as $2,3,4,5$ and 6 .

ANALYSIS

(a) For n having 2 digits: Let the tenth digit be a and unit digit be b of n. Then

$$
n=10 a+b
$$

and

$$
f(n)=a+b+a b
$$

Therefore the given Diophantine equation reduces to
$a+b+a b=10 a+b$
or

$$
\begin{equation*}
a(b-9)=0 \tag{1}
\end{equation*}
$$

Equation (1) gives either $a=0$ or $b=9$. But $a=0$ is not possible because in this case n has only one digit. Hence $b=9$. The tenth digit a can take any value from 1 to 9 . Thus the required values of n are 19, 29, 39, 49, 59, 69, 79, 89 and 99.
(b) For n having 3 digits: Let the hundredth digit be a, the tenth digit be b and unit digit be c of n. Then

$$
n=100 a+10 b+c
$$

and
$f(n)=a+b+c+a b+b c+c a+a b c$
Therefore the given Diophantine equation reduces to
$a+b+c+a b+b c+a c+a b c=100 a+10 b+c$
or
$(1+c)(a+b+a b)=100 a+10 b$.
...(2)
Putting $c=9$ in (2), we get

$$
(a+b+a b)=10 a+b
$$

This implies that

$$
\begin{equation*}
a(b-9)=0 \tag{3}
\end{equation*}
$$

Equation (3) gives either $a=0$ or $b=9$. But $a=0$ is not possible because in this case n has only two digits. Hence $b=9$. The hundredth digit a can take any value from 1 to 9 . Thus the required values of n are 199, 299, 399, 499, 599, 699, 799, 899 and 999.
(c) For n having 4 digits: Let the thousandth digit be a, the hundredth digit be b, the tenth digit be c and unit digit be d of n. Then

$$
n=1000 a+100 b+10 c+d
$$

and
$f(n)=a+b+c+d+a b+b c+c d+a c+a d+b d+a b c+$
$b c d+a c d+a b d+a b c d$.
Therefore the given Diophantine equation reduces to

$$
\begin{align*}
& a+b+c+d+a b+b c+c d+a c+a d+b d+a b c+b c d+a c d+a b d+a b c d \tag{4}\\
& =1000 a+100 b+10 c+d \\
& \text { or } \quad(1+d)(a+b+c+a b+b c+c a+a b c)=1000 a+100 b+10 c \text {. } \tag{5}
\end{align*}
$$

Putting $d=9$ in (5), we get
$a+b+c+a b+b c+c a+a b c=100 a+10 b+c$.
or
$(1+c)(a+b+a b)=100 a+10 b$.
Putting $c=9$ in (7), we get

$$
\begin{equation*}
(a+b+a b)=10 a+b \tag{7}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
a(b-9)=0 . \tag{8}
\end{equation*}
$$

Equation (8) gives either $a=0$ or $b=9$. But $a=0$ is not possible because in this case n has only two digits. Hence $b=9$. The thousandth digit a can take any value from 1 to 9 . Thus the required values of n are 1999, 2999, 3999, 4999, 5999, 6999, 7999, 8999 and 9999.
(d) For n having 5 digits: Let the ten thousandth digit be a, the thousandth digit be b, the hundredth digit be c, the tenth digit be d and unit digit be e of n. Then

$$
n=10000 a+1000 b+100 c+10 d+e
$$

and

$$
f(n)=a+b+c+d+e+a b+b c+c d+a c+a d+a e+
$$

$b d+b e+c e+d e+a b c+b c d+a c d+a c e+a d e+b c e+c d e+b d e+a b d+a b e+$ $a b c d+a c d e+a b d e+a b c e+b c d e+a b c d e$.
Therefore the given Diophantine equation reduces to
$a+b+c+d+e+a b+b c+c d+a c+a d+a e+b d+b e+c e+d e+a b c+b c d+$
$a c d+a c e+a d e+b c e+c d e+b d e+a b d+a b e+a b c d+a c d e+a b d e+a b c e+$ $b c d e+a b c d e=10000 a+1000 b+100 c+10 d+e$
or $(1+e)(a+b+c+d+a b+b c+c d+a c+a d+b d+a b c+b c d+a c d++a b d+$ $a b c d=10000 a+1000 b+100 c+10 d$.
\ldots..(9) Putting $e=9$ in (9), we get
$(a+b+c+d+a b+b c+c d+a c+a d+b d+a b c+b c d+a c d++a b d+a b c d)=$ $1000 a+100 b+10 c+d$.
or $(1+d)(a+b+c+a b+b c+c a+a b c)=1000 a+100 b+10 c$.
\ldots (11) Putting $d=9$ in (11), we get

$$
\begin{gathered}
a+b+c+a b+b c+c a+a b c=100 a+10 b+c \\
(1+c)(a+b+a b)=100 a+10 b .
\end{gathered}
$$

or
\ldots (12) Putting $c=9$ in (12), we get

$$
\begin{gather*}
a+b+a b=10 a+b \\
a(b-9)=0 \tag{13}
\end{gather*}
$$

or
Equation (13) gives either $a=0$ or $b=9$. But $a=0$ is not possible because in this case n has only two digits. Hence $b=9$. The ten thousandth digit a can take any value from 1 to 9 . Thus the required values of n are 19999, 29999, 39999, 49999, 59999, 69999, 79999, 89999 and 99999.
(e) For n having 6 digits: Let the digit of lac place be a, the ten thousandth digit be b, the thousandth digit be c, the hundredth digit be d, the tenth digit be e and unit digit be g of n. Then

$$
n=100000 a+10000 b+1000 c+100 d+10 e+g
$$

and

$$
f(n)=a+b+c+d+e+g+a b+b c+c d+a c+a d+
$$ $a e+b d+b e+c e+d e+a g+b g+c g+d g+e g+a b c+b c d+a c d+a c e+a d e+$ $b c e+c d e+b d e+a b d+a b e+a b g+a c g+a d g+a e g+b c g+b d g+c d g+d e g+$ $c e g+b e g+a b c d+a b c e+a b c g+a c d e+a c d g+a c e g+a d e g+a b d e+a b d g+$ $a b e g+b c d e+b c d g+b c e g+c d e g+a b c d e+b c d e g+a c d e g+a b d e g+a b c e g+$ $a b c d g+a b c d e g$.

Therefore the given Diophantine equation reduces to
$a+b+c+d+e+g+a b+b c+c d+a c+a d+a e+b d+b e+c e+d e+a g+$ $b g+c g+d g+e g+a b c+b c d+a c d+a c e+a d e+b c e+c d e+b d e+a b d+a b e+$ $a b g+a c g+a d g+a e g+b c g+b d g+c d g+d e g+c e g+b e g+a b c d+a b c e+$ $a b c g+a c d e+a c d g+a c e g+a d e g+a b d e+a b d g+a b e g+b c d e+b c d g+b c e g+$ $c d e g+a b c d e+b c d e g+a c d e g+a b d e g+a b c e g+a b c d g+a b c d e g=100000 a+$ $10000 b+1000 c+100 d+10 e+g$
or $\quad(1+g)(a+b+c+d+e+a b+b c+c d+a c+a d+a e+b d+b e+c e+d e+$ $a b c+b c d+a c d+a c e+a d e+b c e+c d e+b d e+a b d+a b e+a b c d+a c d e+a b d e+a b c e+b c d e+$ $a b c d e=100000 a+10000 b+1000 c+100 d+10 e$.

Putting $g=9$ in (14), we get

$$
\begin{align*}
& a+b+c+d+e+a b+b c+c d+a c+a d+a e+b d+b e+c e+d e+a b c+b c d \\
&+a c d+a c e+a d e+b c e+c d e+b d e+a b d+a b e+a b c d+a c d e \\
&+a b d e+a b c e+b c d e+a b c d e=10000 a+1000 b+100 c+10 d+e \\
&(1+e)(a+b+c+d+a b+b c+c d+a c+a d+b d+a b c+ \\
& \text { or } \quad \ldots(15)
\end{align*}
$$

Putting $e=9$ in (15), we get
$(a+b+c+d+a b+b c+c d+a c+a d+b d+a b c+b c d+a c d++a b d+a b c d)=$ $1000 a+100 b+10 c+d$.
or $(1+d)(a+b+c+a b+b c+c a+a b c)=1000 a+100 b+10 c$.
\ldots (17) Putting $d=9$ in (17), we get

$$
a+b+c+a b+b c+c a+a b c=100 a+10 b+c
$$

or

$$
\begin{align*}
& (1+c)(a+b+a b)=100 a+10 b . \\
& \ldots(18) \text { Putting } c=9 \text { in }(18), \text { we get } \\
& a+b+a b=10 a+b \\
& a(b-9)=0 . \tag{19}
\end{align*}
$$

Equation (19) gives either $a=0$ or $b=9$. But $a=0$ is not possible because in this case n has only two digits. Hence $b=9$. The digit of lac place a can take any value from 1 to 9 . Thus the required values of n are 199999, 299999, 399999, 499999, 599999, 699999, 799999, 899999 and 999999.

CONCLUDING REMARKS

Here the results for the Diophantine equation $f(n)=n$ have been obtained for $n=2,3,4,5$ and 6. This Diophantine equation may be discussed for other values of n.

REFERENCES

Brian Miceli (2015): Problem of Week No. 2.
Brown, M.I. (1984): On the Diophantine equation $\sum x_{i}=\prod x_{i}$. Math. Comp. Vol. 42(165), 239-240
Guy, R.K. (2004): Unsolved problems in Number Theory. Springer.
Viola, C. (1993): On the Diophantine equation $\prod_{i=0}^{k} x_{i}-\sum_{i=0}^{k} x_{i}=n$ and $\sum_{0}^{k} \frac{1}{x_{i}}=\frac{k}{n}$. Acta Arith. Vol. 22, 339-352.
Weingartner, A. (2012): On the Diophantine equation $\prod_{i=1}^{n} x_{i}=\sum_{i=1}^{n} x_{i}$. Integers. Vol. 12, 18.

