
European Journal of Mathematics and Computer Science Vol. 2 No. 2, 2015
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 1 www.idpublications.org

STATIC-THRESHOLD-LIMITED BuST PROTOCOL

Constance Kalu

Department of Electrical/Electronic

and Computer Engineering

University of Uyo, Akwa Ibom

NIGERIA

Simeon Ozuomba

Department of Electrical/Electronic

and Computer Engineering

University of Uyo, Akwa Ibom

NIGERIA

Umoren Mfonobong Anthony

Department of Electrical/Electronic

and Computer Engineering

University of Uyo, AkwaIbom

NIGERIA

ABSTRACT

In this paper, Static-Threshold-Limited BuST (STLB) Media Access Control (MAC) protocol

was developed for bandwidth allocation in Multiservice Local Area Network (MLANs).

STLB protocol was developed from two existing versions of the timed token MAC protocols,

namely; Static-Threshold-Limited On-Demand Guaranteed Service Timed Token

(STLODGSTT) protocol and Budget Sharing Token (BuST) Protocol. The development and

analysis of the STLB protocol are presented for a system that is heavily loaded with

asynchronous traffic but with variable load of synchronous traffic. In all, STLB protocol

improved on the ability of the STLODGSTT protocol to utilize available network bandwidth

by improving on the protocol’s spare bandwidth reclaiming mechanism. Also, a numeric

example is used to demonstrate the improved performance of the STLB protocol over the

existing STLODGSTT protocol.

Keywords: Multiservice, bandwidth, protocol, real-time, non real-time , network, traffic.

INTRODUCTION

Nowadays, efficient support for both time-critical and non real-time traffic in the same Local

Area Network (LAN) is essential (Ricardo , 2010 and White , 1997). The MAC protocol

for such multiservice LAN must provide not only bounded message transmission time, as

required by the hard and soft real-time tasks, but also high throughput, as demanded by non

real-time tasks (Indumathi and Murugesan , 2010; Zhang and Burns , 1994 a; Zhang and

Burns , 1994 b ; and Regnier, and Lima, 2006). An attractive MAC approach for such

networks is the timed token protocol. Consequently, various versions of the timed token

protocol have been incorporated into several high-bandwidth network standards (Nicholas

and Wei , 1994), such as, IEEE802.4 Token Bus LAN (IEEE ,1995); Fiber Distributed

Data Interface (FDDI) (Biao and Wei , 1992; Shin . and Zheng , 1995; Kenneth and

Marjory , 1987; Grow , 1982 and Chan , Chen ., Cao and Lee , 1992); SAFENET (Dept. of

Defense US ,1992) ; Manufacturing Automation Protocol (MAP) (Mcguffin , Reid , and

Sparks ,1998) ; High-Speed Ring Bus (Uhlhorn , 1991), in PROFIBUS (Tovar , and

Vasques ,1991); and in wireless networks (Lee, Attias , Puri, Sengupta, Tripakis, and

Varaiya ,2001; Malpani , Vaidya , and Welch , 2001, and Willig ,2002).

Recently, the Static-Threshold-Limited On-Demand Guaranteed Service Timed Token

(STLODGSTT) protocol (Ozuomba , Chukwudebeb , Obot , 2011) and Budget Sharing

Token (BuST) Protocol are developed to improve on the ability of timed token protocol to

support diverse traffic classes on the same LAN (Franchino , Buttazzo , and Facchinetti ,

2007). The two protocols adopted different spare bandwidth reclaiming mechanisms.

Though different, the two mechanisms can be combined to give higher throughput in certain

network and traffic situations than any of the two protocols operating separately. The new

MAC protocol called Static-Threshold-Limited BuST Protocol (STLB) protocol is analyzed

and compared with STLODGSTT protocol. The comparison is with respect to the ability of

European Journal of Mathematics and Computer Science Vol. 2 No. 2, 2015
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 2 www.idpublications.org

each of the protocol to support diverse traffic classes in the same LAN under varying

network configurations.

The rest of the paper is organized as follows. The network and message models are

presented in Section 2 along with brief review of the STLODGSTT and BuST protocols

(Ozuomba , Chukwudebeb , Obot , 2011 and (Franchino , Buttazzo , and Facchinetti , 2007).

The STLB protocol is presented and analyzed in Section 3. In section 4, the STLB protocol

is compared with the STLODGSTT protocol. Finally, concluding remarks and

recommendations for further studies are presented in Section 5.

The Timely-Token Protocol and its Parameters

Network Model

The network model, as presented in (Ozuomba,

Chukwudebeb, Obot, 2011) consists of a token ring

network with N nodes as shown in Fig 1. Each node

has a unique number in the range 0, 1, 2…N-1. For

each node i, the next node along the unidirectional

medium is station (i+1) or more appropriately node

(i+1) mod N. The token frame circulates around the

ring from node i to nodes i + 1, i + 2, … until node i +

(N-1), then to nodes i , i + 1, i+2,…, helping to

determine which node should send a frame of message

among the contending nodes. A special bit pattern

called token frame circulates around the ring from

node i to nodes i + 1, i + 2, … until node i + (N-1), then to nodes i , i + 1, i+2,…, helping to

determine which node should send a frame of message among the contending nodes. Let wi

denote the latency or walk-time between a node, i and its upstream neighbor node, (i + 1).

The sum of all such latencies in the ring is known as the ring latency or the token walk-time,

W, where W =

()

0

(wi

1Ni

i





) (1)

The ring latency, W denotes the token walk time around the ring when none of the nodes in

the network disturb it (Biao, and Wei, 1992 and Ozuomba, and Chukwudebe , 2003).

Message Model

Messages generated in the system at run time may be classified as either synchronous (real-

time) messages or asynchronous (non real-time) messages (Ozuomba, Chukwudebeb, Obot,

2011). Furthermore, each node, i in the ring has a single stream of synchronous messages, si ,

where si is defined in terms of the tuple ; si = { Ci , Pi , Di}, where:

 Message Length, Ci , is the maximum amount of time required to transmit a stream

message. This includes the time required to transmit both the payload data and

message headers.

 Period Length, Pi , is the minimum inter-arrival period between consecutive messages in

stream, si at node i. If the first message of node i is put in the transmission queue at

time ti,1 , then the j-th message in stream si will arrive at time ti,j = ti,1 + (j - 1) Pi,

 Fig1 A 4-Station Token Ring Network

Repeater

 Node

Token

3 1

0

2

European Journal of Mathematics and Computer Science Vol. 2 No. 2, 2015
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 3 www.idpublications.org

where j >1. For instance, if the first message arrives at time t, then the second

message will arrive at t + Pi and the third message will arrive at t + 2Pi as shown in

Fig 2.

 Message Deadline, Di , is the relative deadline associated with messages in stream si, that

is, the maximum amount of time that can elapse between a message arrival and the

completion of its transmission. Thus, the transmission of the j-th message in stream

si that arrives at ti,j must be completed no later than ti,j + Di, which is the message's

absolute deadline. Again, as an example, if the first message in the message stream,

si arrives at time t, then it must be transmitted not later than t + Di, as shown in Fig

2.

Fig 2: Model for the Synchronous (or Real-Time) Message Stream, Si in Node I

(Ozuomba , Chukwudebeb, Obot, 2011).

The Timed-Token Protocol Parameters

The parameters as presented in (Ozuomba , Chukwudebeb, Obot, 2011) includes the

following:

a) Target Token Rotation Time, (TTRT): TTRT is the time needed by the token to

complete an entire round-trip of the network. The value of TTRT, denoted as  .
b) Synchronous Capacity of Node i (Hi):
 Hi represents the maximum time for which a station, i is allowed to transmit synchronous

messages during every token receipt. Then, according to (Ozuomba , Chukwudebeb,

Obot, 2011);

 H0 + H 1 +… H N-1 = ()

0

(Hi

1Ni

i





) = H

 (2)

Note: Ci is the Message Length

Period, Pi

Message 1

Deadline, Di

Message 2

Deadline, Di

Ci Ci

t

Release Time, t of

Message 1 of Real-

Time Message

Stream, Si

Release Time, t + Pi

of Message 2 of Real-

Time Message

Stream, Si

Period, Pi

t t + Di t + Pi t + 2Pi t + Pi + Di

Release Time, t +

Pi of Message 3

of Real-Time

Message

Stream, Si

Deadline of

Message 1

Deadline of

Message 2

European Journal of Mathematics and Computer Science Vol. 2 No. 2, 2015
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 4 www.idpublications.org

 Hi + wi = i

(3)

 H + W = T

 (4)

 A = 
- T (5)

 where A be defined as the total time units available to the asynchronous traffic in every

cycle .

Constraints:

For proper operation of the timed-token protocol, the choice of values for  and T

parameters must satisfy the Protocol Constraint and the Deadline Constraint which

according to (Ozuomba , Chukwudebeb, Obot, 2011) is given as,

 T ≤  ≤
1,...1,0

Min
 Ni

(D i

) (6)

c) Token Rotation Timer of Node i (TRTi):
TRTi is the cycle length or the time between two consecutive token receipts at node i.

d) The Unused Synchronous Bandwidth (ε)

According to (Ozuomba , Chukwudebeb, Obot, 2011),

hi = Hi - εi (7)

where hi denotes the used portion of Hi and εi the unused portion of Hi time units

reserved for the synchronous traffic in node i (where hi ≤ Hi). Then, for a system

that is lightly loaded with synchronous traffic, out of the Hi time units, only hi time

units are used in node i leaving εi time units unused

 εi + εi + … + εi = ε

 (8)

e) An Asynchronous-Limit Variable of Node i (THTi):
 THTi is used to control the amount of time for which node i can transmit

asynchronous messages.

2.4 Review of BuST Protocol and STLODGSTT Protocol

 Generally, in the timed token protocols, there are two categories of spare bandwidth

which can be reallocated to the asynchronous traffic. The two categories of spare

bandwidth are;

i. The unallocated bandwidth per cycle, given as A =  - T (which is the same as , A =

 - H – W)

ii. The allocated but unused bandwidth, given ε = εi + εi + … + εi. . ε is the portion of

the bandwidth allocated to the synchronous traffic but is not used by the

synchronous traffic due to drop in the expected load level of the synchronous traffic.

BuST and STLODGSTT protocols differ on how each protocol allows the nodes to exploit

these spare bandwidth to transmit asynchronous traffic on each token receipt.

In the BuST (Franchino , Buttazzo, and Facchinetti, 2007), transmission of asynchronous

traffic is done with the ε spare bandwidth unused by real-time (synchronous) traffic. In

essence, the Hi timed units of a node is shared between synchronous and asynchronous

traffic. When a node receives the token, it transmits its synchronous traffic for hi time

units where hi ≤ Hi. Then, the asynchronous messages in the node i, are transmitted for 𝑒𝑖
= 𝜀𝑖 time units, where 𝜀𝑖 = (Hi - hi) time units . Essentially, the synchronous and the

asynchronous traffic utilize the Hi time units in each node. The BuST protocol do not use

European Journal of Mathematics and Computer Science Vol. 2 No. 2, 2015
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 5 www.idpublications.org

the A time units (where A =  - H – W). In all, for the BuST protocol (Franchino ,

Buttazzo, and Facchinetti, 2007), the total time units used for the transmission of data

(synchronous and asynchronous) frames in any cycle is given as ∑ (ℎ𝑖 + 𝑒𝑖)
𝑖 =𝑁−1
𝑖=0 = (h +

e) ≤ H . Hence, at its best, the BuST protocol can have an average cycle length of H + W

which is less than , the average bandwidth available in every cycle (Ozuomba,

Chukwudebeb, Obot, 2011).

On the other hand, the STLODGSTT protocol uses ai time units in each node i, for the

transmission of asynchronous traffic, where ai = max(0,  - ε - (ti - ti-N)) + AT , and AT

=
N

T - 
 (Ozuomba, Chukwudebeb, Obot, 2011). According to (Ozuomba,

Chukwudebeb, Obot, 2011) , in each cycle, the total time units used for the transmission of

asynchronous traffic is given as ∑ (𝑎𝑖)
𝑖 =𝑁−1
𝑖=0 ≤ A time units (where A =  - H – W) .

Also, in each cycle, the total time units used for the transmission of synchronous traffic is

given as ∑ (ℎ𝑖)
𝑖 =𝑁−1
𝑖=0 = h ≤ H , where h = H - ε . In all, for the STLODGSTT the total

time units used for the transmission of data (synchronous and asynchronous) frames in any

cycle is given as ∑ (ℎ𝑖 + 𝑎𝑖)
𝑖 =𝑁−1
𝑖=0 = (h + a) ≤ (H + A). Hence, at its best , the

STLODGSTT can have an average cycle length of A + H + W which is equal to ,
maximum value of bandwidth available in every cycle.

However, since the STLODGSTT protocol does not use the ε time units, under load load

of the synchronous traffic (h ≤ H, and hence ε > 0) , the average cycle length for the

STLODGSTT protocol drops by ε time units to a value given as,  - ε which is less that 
(Ozuomba, Chukwudebeb, Obot, 2011). In order to solve the problem, in this paper, the

BuST protocol’s spare bandwidth allocation mechanism is incorporated into the

STLODGSTT mechanism to give the new protocol with more robust bandwidth

reclamation mechanism as presented in subsequent sections.

The Static-Threshold-Limited BuST (STLB) Protocol

The STLB Algorithm and Flowchart

The flowchart of the STLB protocol is presented in Fig 3 while the detailed algorithm is

given as Protocol PSB MAC Algorithm.

Protocol PSB (MAC Algorithm)

PSB1: NETWORK INITIALISATION CYCLE

During the first token rotation, to initialize timers, no station is allowed to transmit any

packets. First, TTRT, that is  is defined to satisfy the deadline requirements of every

synchronous message in the network. Then, the following two parameters are also defined, wi

, Hi for 0 ≤ i ≤ N-1. In addition, hi is reset to zero. So, ε = 


 1Ni

i 0

(Hi) = iH
1N

i

 where εi = Hi

for 0 ≤ i ≤ N-1, εi = Hi ;n = N and n i = 1 (for i = 0, 1,……N-1)

In summary, during the network initialization, the following parameters are defined,

initialized or computed:

INITIALIZATION CYCLE :

PSB1.1 Define TTRT (that is 𝜏) and N

PSB 1.2 Define wi for i = 0,1,...........N-1

European Journal of Mathematics and Computer Science Vol. 2 No. 2, 2015
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 6 www.idpublications.org

PSB1.3 Define Hi for i = 0,1,............N-1

PSB1.4 Initialize hi = 0 for I = 0,1, …………..N-1

PSB1.4.1 Initialize 𝜀𝑖 = 𝜀𝑖̅ = Hi for i = 0,1,...............N-1

PSB1.4.2 Initialize 𝑒𝑖 = 0 for i = 0,1,...............N-1

PSB1.4.3 e = ()

0

(ei

1Ni

i





)

PSB1.5 Initialize a(i-N) = 0 for i = 0,1,.............N-1

PSB1.6

 PSB1..6.1 Compute 𝜀 = () ε

0

(i

1Ni

i




) = H

 PSB1..6.2 Compute 𝜀 ̅ =(∑ (𝜀𝑖̅)
𝑖=𝑁−1
𝑖=0) = () ε

0

(i

1Ni

i




) - ()

0

(ei

1Ni

i





) =

H

PSB1.7 Compute T =() wH

0

(ii

1Ni

i





)

PSB1.8 Compute AT =
𝜏−𝑇

𝑁

PSB1.9 Initialize Token rotation timer (TRTi)Timer

PSB1.9.1 i = 0

PSB1.9.2 TRTi = 0

PSB1.9.3 Start TRTi; TRTi Counts up

PSB1.9.4 i = i + 1

PSB1.9.5 Pass the Token to Node i + 1

PSB1.9.6 IF (i < N) then

 Goto Step PSB1.9.2

 Else

 Goto Step PSB2.1

 End if.

DATA TRANSMITION CYCLE, PART I: TRANSMISSION OF SYNCHRONOUS

FRAMES

PSB2.1 Check Frames that arrives at Node i

PSB2.2 IF (Frames is Token) then

 Goto Step PSB2.5

 Else

 Goto Step PSB2.3

 End if

PSB2.3 Process Frame (Store, Ignore, etc.)

PSB2.4 Goto Step PSB2.1

PSB2.5 THTi = max(TTRT – 𝜀 − TRTi , 0)

PSB2.6

PSB2.6.1 𝜀′ = 𝜀 − 𝜀i

European Journal of Mathematics and Computer Science Vol. 2 No. 2, 2015
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 7 www.idpublications.org

PSB2.6.2 𝜀 ̅′ = 𝜀̅ − 𝜀𝑖̅
PSB2.7.1 TRTi = 0

PSB2.7.2 Start TRTi

PSB2.7.3 TRTi counts up

PSB2.8 IF (TRTi ≤ Hi) then

 Goto StepPSB2.9

 Else

 Goto Step PSB2.12

 End if

PSB2.9 IF (Synchronous Frames are Available) then

 Goto Step PSB2.10

 Eles

 Goto StepPSB2.11

 End if

PSB2.10 Transmit Synchronous Frames

PSB2.11 Goto Step PSB2.8

PSB2.12 hi = TRTi

PSB2.13

 PSB2.13.1 𝑒′ = e − 𝑒𝑖 ;
 PSB2.13.2 𝑒𝑖 = 0

 PSB2.13.3 TX = TRTi , TRTi counts up ;

 PSB2.13.4 IF ((TRTi ≤ Hi) and (Asynchronous Frames are Available))

then Transmit Asynchronous Frames ;

 𝑒𝑖 = 𝐻𝑖 − 𝑇X;

 End if

 PSB2.14 𝑒 = e′ + 𝑒𝑖
 PSB2.15 𝜀𝑖 = 𝐻𝑖 − ℎ𝑖
 PSB2.16 𝜀 = 𝜀′ + 𝜀𝑖

 PSB2.17 𝜀𝑖̅ = 𝐻𝑖 − ℎ𝑖 - 𝑒𝑖 ∴ 𝜀𝑖̅ = 𝜀𝑖 - 𝑒𝑖
 PSB2.18 𝜀 ̅ = 𝜀 ̅′ + 𝜀𝑖̅ (Goto Q3.1)

DATA TRANSMITION CYCLE, PART II: TRANSMISSION OF ASYNCHRONOUS

FRAMES

PSB3.1 THTi = THTi + min(a1-N, AT)

PSB3.2 ai = THTi

PSB3.3 Start THTi, THTi counts down

PSB3.4 IF (THTi > 0) then

 Goto Step PSB3.5

 Else

 Goto Step PSB3.8

 End if

PSB3.5 IF (Asynchronous Frames are Available) then

 Goto Step PSB3.6

 Else

 Goto Step PSB3.8

 End if

PSB3.6 Transmit Asynchronous Frame

PSB3.7 Goto Step PSB3.4

PSB3.8 ai = ai – THTi

PSB3.9 ai-N = ai

European Journal of Mathematics and Computer Science Vol. 2 No. 2, 2015
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 8 www.idpublications.org

PSB3.10 i = i + 1

PSB3.11 i = (i mod N)

PSB3.12 Pass the Token to Node i (Goto PSB2.1)

The flowchart of STLB Protocol

 N

e
tw

o
r

k
 I

n
it

ia
li

s
a

ti
o

n
 C

y
c

le

 I

n
it

ia
li

s
e

 T
im

e
r

Y

N

PSB1.9.4

PSB1.9.5

PPSB

PSB1.6.

PSB1.6.

PSB1.5

PSB1.4.

PSB1.4.

PSB1.4.

PSB1.

PSB1.8

PSB1.

PSB1.

PSB2.

1

PSB1.9.2

PSB1.9.3

PSB1.9.6

PSB1.1

 PSB1.9.1

 i = i + 1

 Pass token to Node (i mod N)

 i < N ?

Define TTRT (that is, )

Define Wi, for i = 0,1,..N-1

Initailise ai-N = 0,
 for i = 0,1,…N- 1

 Compute AT =

 Define Hi for i = 0,1,..N-1

 Start TRTi ; TRTi counts up.

Start

 Let i = 0

 TRTi = 0;

 Initailise hi = 0 for i = 0,1,..N-1

Initialize 𝜀𝑖 = 𝜀𝑖̅ = Hi for i = 0,1,.....N-1

 Initialize 𝑒𝑖 = 0 for i = 0,1,..N-1

Compute еi = ()

 Compute ε =()= H

 T = ()

 𝜀 =(∑ (𝜀 𝑖)
𝑖=𝑁−1
𝑖=0) = ()− () = H

Fig 3: Flowchart of the Static -

Threshold-Limited Bust

Protocol

European Journal of Mathematics and Computer Science Vol. 2 No. 2, 2015
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 9 www.idpublications.org

Y

N

N

N

N

 S

y
n

ch
ro

n
o

u
s

D
a

ta
 T

r
a

n
s

m
is

s
io

n
 C

y
c

le

PSB1.11.6

PSB2.11

PSB2.12

PSB2.10

PSB2.9

PSB2.8

PSB2.7

PSB2.6.2

PSB2.6.1

PSB2.5

PSB2.4

PSB2.3

PSB2.2

PSB2.1

PSB2.18

PSB2.17

PSB2.16

PSB2.15

PSB2.14

PSB2.13.7

PSB2.13.6

PSB2.13.5

PSB2.13.4

PSB2.13.3

PSB2.13.2

PSB2.13.1

𝑒𝑖 = 0

 𝑒 = e′ + 𝑒𝑖

 𝑒𝑖 = 𝐻𝑖 − 𝑇X

Check Frame that arrives at
Node i

hi = TRTi

 ε′ = ε - εi

 Process Frame

 THTi = Max (TTRT - ε - TRTi ,0)

Received the
Token?

?

 Transmit synchronous frame

 TX = TRTi , TRTi counts up ;

 𝜀𝑖̅ = 𝐻𝑖 − ℎ𝑖 - 𝑒𝑖 ∴ 𝜀𝑖̅ = 𝜀𝑖 - 𝑒𝑖

 𝜀 ̅ = 𝜀 ̅′ + 𝜀𝑖̅

 Transmit asynchronous frame

PSB3.1

𝜺𝒊 = 𝑯𝒊 + 𝒉𝒊

 𝜀 ̅′ = 𝜀 ̅ − 𝜀 𝑖

 TRTi = 0;
 Start TRTi ; TRTi counts up.

TRTi ≤ Hi

Y

Any
Synchronous

Frame ?

Y

 𝑒′ = e − 𝑒𝑖

𝜺 = 𝜺′ + 𝜺𝒊

TRTi ≤ Hi

Y

Any
Asynchronous

Frame ?

Y

N

Continuation of Fig 3: Flowchart of the
Static -Threshold-Limited Bust Protocol

European Journal of Mathematics and Computer Science Vol. 2 No. 2, 2015
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 10 www.idpublications.org

Analysis of the STLB Algorithm
The analysis of STLODGSTT protocol as presented in (Ozuomba , Chukwudebeb , Obot ,

2011) applies to STLB protocol except that;

a) In STLB, ei denote the portion of the Hi time units that are actually used for

transmitting asynchronous traffic in station i; then e denote the total of ei per cycle .

b) In the analysis of the STLB protocol, every occurrence of 𝜀𝑖 is replaced with 𝜀𝑖̅ ; and

ε is replaced with 𝜺 ; where

 𝜀𝑖 = Hi – hi

 (9)

 𝜀𝑖̅ = 𝜀𝑖 - 𝑒𝑖 = Hi – hi - ei = Hi - (hi + ei)

 (10)

 𝜀 = ∑ (𝜀𝑖)
𝑖=𝑁−1
𝑖=0 = H –

h (11)

Continuation of Fig 3: Flowchart of the Static-Threshold-Limited

Bust Protocol

A
sy

n
ch

ro
n

o
u

s
D

a
ta

 T
r

a
n

s
m

is
s

io
n

 C
y

c
le

PSB3.3

Y

Y

N

N
ai-N = ai

PSB3.9

ai = ai -T HTi

PSB3.8

PSB3.12

i = (i mod N) PSB3.11

PSB2.

1*

PSB3.10 i = i + 1

 Pass Token to Node i

PSB3.7

Start TRTi ; TRTi counts up

THTi = THTi + min(ai-N, AT)

PSB3

PSB3.1

ai = THTi

PSB3.2

THTi> 0?

PSB3.4

Any
Asynchrono
us Frame?

PSB3.5

Transmit asynchronous frame
(THTi keeps counting down) PSB3.6

European Journal of Mathematics and Computer Science Vol. 2 No. 2, 2015
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 11 www.idpublications.org

 𝑒 = ∑ (𝑒𝑖)
𝑖=𝑁−1
𝑖=0

(12)

 𝜺 = ∑ (𝜀𝑖̅)
𝑖=𝑁−1
𝑖=0 = 𝜀 – e = H – h – e = H – (h + e)

(13)

Consequently, following the analytical expressions for the STLODGSTT protocol as

presented in (Ozuomba , Chukwudebeb , Obot , 2011), the performance parameters for

STLB protocol can be stated as follows;

Upper Bound On Cycle Length, max (t i - t i-N)
According to (Ozuomba , Chukwudebeb , Obot , 2011) , for STLODGSTT protocol

Upper Bound On Cycle Length STLODGSTT protocol =  - ε when ε > 0

(14)
Upper Bound On Cycle Length STLODGSTT protocol =  when ε = 0

(15)
Similarly, replacing ε in Equation(14) with 𝜺 gives

Upper Bound On Cycle Length STLB protocol =  - 𝜺 when 𝜺

 > 0

(16)

Now, 𝜺 = 𝐞 – ε where e ≤ ε, then ;

 Upper Bound On Cycle Length STLB protocol =  + 𝐞 – ε where e ≤ ε and ε ≥ 0

(17)
 Upper Bound On Cycle Length STLB protocol =  when e = ε and ε ≥ 0

(18)
For a network that is heavily loaded with asynchronous traffic, when the synchronous traffic

fails to use up its H time units per cycle, in that case , ε ≥ 0 , for the STLODGSTT

protocol, the cycle length reaches a maximum value of  - ε time units since the

STLODGSTT protocol does not allow the asynchronous traffic to use the spare bandwidth , ε
left by the synchronous traffic. However, for the STLB protocol, the cycle length reaches a

higher maximum value of  time units since the STLB protocol allows the asynchronous

traffic to use up all the spare bandwidth , ε left by the synchronous traffic; this occurs in

network that is heavily loaded with asynchronous traffic in which case, 𝐞 = ε , for all

values of i.

Average Cycle Length, (Ĉ)

Let ĈSTLODGSTT denote the Average Cycle Length, for STLODGSTT protocol and ĈSTLB

denote the Average Cycle Length for STLB protocol. Then, according to (Ozuomba ,

Chukwudebeb , Obot , 2011),

 ĈSTLODGSTT ≤ ( − T) + (T − ε)
(19)

 ĈSTLODGSTT ≤  − 𝛆
(20)

Similarly, replacing ε in Equation(19) with 𝜺 gives

 ĈSTLB ≤ ( − T) + (T − 𝜺)
(21)

 ĈSTLB ≤  − 𝜺
(22)

Now, T − 𝜺 = T + 𝐞 – ε where e ≤ ε

 ĈSTLB ≤ ( − T) + (T − ε) + e where e ≤ ε

(23)

European Journal of Mathematics and Computer Science Vol. 2 No. 2, 2015
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 12 www.idpublications.org

 ĈSTLB ≤  – ε + e where e ≤ ε

(24)

Hence, ĈSTLB = ĈSTLODGSTT + 𝐞
(25)

The Average Asynchronous Traffic Time Units Per Cycle (AV)

Let 𝐀𝐕STLODGSTT denote the average time units used in the STLODGSTT protocol to

transmit asynchronous in every cycle and 𝐀𝐕STLB denote the denote the average time units

used in the STLB to transmit asynchronous traffic in every cycle. Now, according to

(Ozuomba , Chukwudebeb , Obot , 2011),

 ĈSTLODGSTT ≤ ( − T) + (T − ε) (26)

In the expression for ĈSTLODGSTT, ( − T) , denote the average value of the asynchronous

traffic delivered per cycle through the best-effort mechanism , while (T − ε) denote the

average value of the synchronous traffic transmitted per cycle through the guaranteed service

mechanism. Consequently, the average time units used in the STLODGSTT protocol to

transmit asynchronous traffic in every cycle is given as (Ozuomba , Chukwudebeb , Obot ,

2011),

 𝐀𝐕STLODGSTT = ( − T) (27)

Similarly, for the SLTB protocol,

 ĈSTLB ≤ ( − T) + (T − 𝜺) (28)

In the expression for ĈSTLB, ( − T) , denote the average value of the asynchronous traffic

delivered per cycle through the best-effort mechanism, while (T − 𝜺) denote the average

value of the synchronous and asynchronous traffic transmitted per cycle through the

guaranteed service mechanism. The two components of (T − 𝜺) can be separated by

replacing 𝜺 with 𝐞 – ε where e ≤ ε. This gives,

 T − 𝜺 = T – ε + 𝐞 where e ≤ ε (29)

In this case, e is the asynchronous traffic delivered through the guaranteed service mechanism

while the T – ε is the synchronous traffic delivered through the guaranteed service

mechanism. Hence,

 ĈSTLB ≤ ( − T) + 𝐞 + (T − ε) where e ≤ ε (30)

Therefore, 𝐀𝐕STLB = ( − T) + 𝐞 (31)

It can be seen that STLB protocol delivers additional 𝐞 time units of asynchronous traffic on

every cycle more than the STLODGSTT protocol.

Comparison Of The Performance Of STLB Protocol and STLODGSTT Protocol
Numerical Example
Consider a ring network with any number of stations; the network uses the STLODGSTT
protocol and the STLB protocol for its MAC , where the protocol parameters are given as
follows:  = 100, W = 4 for all the nodes, H = 80 and hence T = 84. Now, the network
operates under heavy load of asynchronous traffic but with variable load of synchronous
traffic. With these given parameters and load configurations, the performance of the
protocols vis avis the Average Cycle Length and the Average Asynchronous Traffic Per
Cycle computed with respect to the variation in the Ɛ, are given in Table 1 and Table 2
respectively, as well as in Fig 4a and Fig 4b respectively.

European Journal of Mathematics and Computer Science Vol. 2 No. 2, 2015
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 13 www.idpublications.org

RESULTS
Table 1: Average Cycle Length

Vs. Ɛ (where  = 100, H =

80, T = 84)

Ɛ h e Ĉ𝐒𝐓𝐋𝐎𝐃𝐆𝐒𝐓𝐓 Ĉ𝐒𝐓𝐋𝐁
0 80 0 100 100

8 72 8 92 100

16 64 16 84 100

24 56 24 76 100

32 48 32 68 100

40 40 40 60 100

48 32 48 52 100

56 24 56 44 100

64 16 64 36 100

72 8 72 28 100

80 0 80 20 100

Table 2 : Average Asynchronous
Traffic Per Cycle Vs Ɛ (where  =

100, H = 80, T = 84)

Ɛ h E

𝐀
𝐕
𝐒
𝐓
𝐋
𝐎
𝐃
𝐆
𝐒
𝐓
𝐓

𝐀
𝐕
𝐒
𝐓
𝐋
𝐁

0 80 0 16 16

8 72 8 16 24

1
6 64 16 16 32

2
4 56 24 16 40

3
2 48 32 16 48

4
0 40 40 16 56

4
8 32 48 16 64

5
6 24 56 16 72

6
4 16 64 16 80

7
2 8 72 16 88

8
0 0 80 16 96

0

20

40

60

80

100

120

0 50 100

A
v
e
r
a
g

e
 C

y
c
le

 L
e
n

g
th

ε

Fig 4a Graph of Average Cycle Length, (ĉ)
Vs. ε (where  = 100, H = 80, T = 84)

h

e

Ĉ_STLODGST
T

Ĉ_STLB

0

20

40

60

80

100

120

0 50 100

A
ve

ra
ge

 A
sy

n
ch

ro
n

o
u

s
Tr

af
fi

c
 P

er
 C

yc
le

 (
A

V

)

Ɛ

Fig 4b Graph of Average Asynchronous Traffic Per

Cycle (AV) Versus Ɛ (where  = 100, H = 80, T = 84)

h

e

AvSTLODGSTT

AvSTLB

European Journal of Mathematics and Computer Science Vol. 2 No. 2, 2015
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 14 www.idpublications.org

DISCUSSION OF RESULTS

a. The Average Asynchronous Traffic Time Units Per Cycle

Table 1 shows that STLB protocol maintains maximum value for average cycle length

irrespective of the variations in the load level of the synchronous traffic from a maximum

value of 80 (h = H = 80) to its minimum value of 0 (h = 0) . This is because when a network

is heavily loaded with asynchronous traffic, e = Ɛ, as can be seen in Table 1 and Fig 4a. That

means, all the spare bandwidth left by the synchronous traffic are reallocated to the

asynchronous traffic, as shown in Table 1 and Fig 4a. Hence, as h drops from 80 to 0, Ɛ and

hence e increases accordingly , maintaining the overall throughput at its maximum attainable

level.

On the other hand, for the STLODGSTT protocol, the average cycle length drops as the

load level of the synchronous traffic drops. Specifically, in Table 1, ĈSTLODGSTT drops

from a maximum value of 100 to 20, as h drops from its maximum value of 80 (h = H = 80

) to its minimum value of 0 (h = 0) . In other words, STLB protocol is more effective in

utilizing the available bandwidth than the STLODGSTT protocol.

b. The Average Asynchronous Traffic Time Units Per Cycle

From Table 2, STLODGSTT protocol maintained a minimum value of 16 for the average

asynchronous traffic per cycle, irrespective of the variations in the load level of the

synchronous traffic from 80 (h = H = 80) to 0, (h = 0) . This is because, even if the

network is heavily loaded with asynchronous traffic, the STLODGSTT protocol does not

allow the asynchronous traffic to use the spare bandwidth, Ɛ left by the synchronous traffic.

In essence, the STLODGSTT protocol restricts the asynchronous traffic to only the  − 𝐓

time units (where  − 𝐓 = 𝟏𝟎𝟎 − 𝟖𝟒 = 𝟏𝟔) , as can be seen in Table 2 and Fig 4b.

On the other hand, for the STLB protocol, the average asynchronous traffic transmitted in

every cycle increases as the load level of the synchronous traffic drops. Specifically, the

AVSTLB increases from a minimum value of 16 when h is at its maximum value of 80 (h =

H = 80) ; to a maximum value of 96 when h is at its minimum value of 0 (h = 0). In

other words, STLB protocol is more effective in utilizing the spare bandwidth for

transmitting additional asynchronous traffic.

CONCLUSION

In this paper, a Static-Threshold-Limited BuST Protocol (STLB) protocol was developed to

improve on the ability of the timed token protocol to utilize spare bandwidth in the occasion

of fluctuating load levels of the synchronous traffic. The improvement that can be achieved

with the new MAC protocol was demonstrated through analytical expressions and numerical

example. Specifically, with the STLB protocol, the spare bandwidth left by the synchronous

traffic is reallocated to the asynchronous traffic without violating the stringent time

constraints required by the synchronous traffic. In essence, with STLB protocol, higher

throughput can be realized than is obtainable in the existing Static-Threshold-Limited On-

Demand Guaranteed Service Timed Token (STLODGSTT) protocol from which STLB

protocol was developed.

European Journal of Mathematics and Computer Science Vol. 2 No. 2, 2015
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 15 www.idpublications.org

RECOMMENDATIONS

The STLB protocol is developed and analyzed under heavy load of asynchronous traffic.

However, with respect to the asynchronous traffic, heavy load situations are of different

types. In the present analysis, all the nodes are assumed to be heavily loaded with

asynchronous traffic. Such is the case of uniform heavy load. There is ongoing research by

the authors to examine the performance of timed token protocols under non uniform heavy

load of asynchronous traffic. In such situation, not all the nodes are heavily loaded with

asynchronous traffic. Preliminary results from the study of other versions of the timed token

protocols indicate that their performance differ significantly when examined under uniform

and non uniform heavy load situations. It is therefore expedient that the STLB protocol

should also be studied under non uniform heavy load of asynchronous traffic.

REFERENCES

Biao C. and Wei Z., (1992). Properties of the Timed Token Protocol. Department of

Computer Science Texas A&M University College Station, TX 77843-3112 Oct., 1992

Technical Report 92-038.

Chan E., Chen D., Cao J. and Lee C. H. (1992). The time Properties of the FDDI-M Medium

Access Control Protocol. The Computer Journal, Vol. 82 No. 1 , pp. 96-102, Jan. 1999.

Dept. of Defense US (1992). Survivable Adaptable Fibre-Optic Embedded Networks. MIL-

STD-2004, US Dept. of Defense, Washington D.C., Sept, 1992.

Franchino G., Buttazzo G. C., and Facchinetti T. (2007). BuST: Budget Sharing

TokenProtocol for Hard Real-Time Communication. In Proc. of the 12th IEEE

International Conference on Emerging Technologies and Factory Automation (ETFA

2007), Sept. 2007.

Grow R. (1982). A timed token protocol for local area networks. Proc. Electro’82, Token

Access Protocols, Paper 17/3, May 1982.

IEEE (1995). The Institute of Electrical and Electronic Engineers, Token-passing bus access

method and physical layer specifications. America national Standard ANSI/IEEE std.

802.4 – 1985.

Indumathi G.and Murugesan K. (2010) . A bandwidth efficient scheduling framework for non

real time applications in wireless networks .International Journal of Distributed and

Parallel systems (IJDPS) Vol.1, No.1, September 2010

Kenneth C. S. and Marjory J. J.,(1987) .Cycle time properties of the FDDI token ring

protocol. IEEE Trans. Software. Eng., vol. SE-13, pp. 376-385, Mar. 1987

Lee, D, Attias, R, Puri, A, Sengupta, R, Tripakis, S and Varaiya P (2001). A wireless token

ring protocol for intelligent transportation systems. IEEE Intelligent Transportation

Systems Conference Proceedings, Aug. 2001, pp. 1152-1157

Malpani N., Vaidya N., and Welch J (2001) . Distributed Token circulation on mobile Ad

Hoc Networks. 21th International Conference on distributed computing systems (ICDCS

2001) PHOENIX, Arizona, USA, April 2001, pp.691-701.

Mcguffin L.J., Reid L.O, and Sparks S.R. (1998). MAP/TOP in CIM Distributed Computing.

IEEE Network, vol.2, no. 3 , May 1988, pp. 23 – 31.

Nicholas M. and Wei Z.,(1994). The timed-token protocol for real-time communications.

Computer, vol. 27, no. 1, pp. 35-41, January, 1994.

Ozuomba S., Chukwudebeb G.A., Obot A.B. (2011). Static-Threshold-Limited On-Demand

Guaranteed Service For Asynchronous Traffic In Timely-Token Protocol. Nigerian

Journal of Technology, Vol. 30, No. 2, pp124 - 142 , June 2011.

European Journal of Mathematics and Computer Science Vol. 2 No. 2, 2015
 ISSN 2059-9951

Progressive Academic Publishing, UK Page 16 www.idpublications.org

Ozuomba S. and Chukwudebe G.A, (2003). An Improved Algorithm For Channel Capacity

Allocation In Timer Controlled Token Passing Protocols. A Journal Paper Published in

An International Journal Of Nigerian Computer Society (NCS), Vol. 9 No 1 , pp 116 –

124, June 2003 .

Regnier, P. and G. Lima, (2006). Deterministic integration of hard and soft real-time

communication over shared-ethernet. In Proc. of Workshop of Tempo Real (2006),

Curitíba, Brazil

Ricardo M. (2010) .Survey of Real-Time Communication in CSMA-Based Networks.

Network Protocols and Algorithms ISSN 1943-3581 2010, Vol. 2, No. 1

Shin K. G. and Zheng Q. (1995). FDDI-M: A scheme to double FDDI’s ability of supporting

synchronous traffic. IEEE Trans. on Parallel and Distributed Systems, Vol. 6, No. 11, pp.

1125 -1131,.Nov. 1995.

Tovar E., and Vasques F. (1991). Setting Target Rotation Time in Profibus Based Real-Time

Distributed Applications. Proc. of the 15th IFAC Workshop on Distributed Computer

Control Systems, 1998.

Uhlhorn R.W. (1991). The fibre-optic high-speed data bus for a new generation of a military

aircraft. IEEE LCS, Vol.2, No.1, pp. 36 – 43, Feb. 1991.

White P. P., (1997).RSVP and Integrated Services in the Internet: A Tutorial . IEEE

Communications Magazine • May 1997

Willig A. (2002). Analysis of the PROFIBUS Token passing protocol over wireless links.

Proc. of IEEE Int. Symposium on Industrial Electronics (IEEE-ISIE 2002), L’Aquila,

Italy, July 2002, pp. 56-61.

Zhang S. and Burns A., (1994 a). Timing Properties of the Timed Token Protocol. Tech.

Rept. (YCS 243), Dept of Computer Science, Univ. of York (May 1994).

Zhang S. and Burns A., (1994 b). A Study of Timing Properties with the Timed Token

Protocol. Technical Report (YCS 226), Dept. of Computer Sci., Univ. of York (March

1994).

