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ABSTRACT 

 

In this paper, Static-Threshold-Limited BuST (STLB) Media Access Control (MAC) protocol 

was developed for bandwidth allocation in Multiservice Local Area Network (MLANs). 

STLB protocol was developed from two existing versions of the timed token MAC protocols, 

namely; Static-Threshold-Limited On-Demand Guaranteed Service Timed Token 

(STLODGSTT) protocol and Budget Sharing Token (BuST) Protocol. The development and 

analysis of the STLB protocol are presented for a system that is heavily loaded with 

asynchronous traffic but with variable load of synchronous traffic. In all, STLB protocol 

improved on the ability of the STLODGSTT protocol to utilize available network bandwidth 

by improving on the protocol’s spare bandwidth reclaiming mechanism. Also, a numeric 

example is used to demonstrate the improved performance of the STLB protocol over the 

existing STLODGSTT protocol.  

 

Keywords: Multiservice, bandwidth, protocol, real-time, non real-time , network, traffic. 

 

INTRODUCTION 

 

Nowadays, efficient support for both time-critical and non real-time traffic in the same Local 

Area Network  (LAN) is essential (Ricardo , 2010 and White , 1997). The MAC protocol  

for such multiservice LAN  must provide not only bounded message transmission time, as 

required by the hard and soft real-time tasks, but also high throughput, as demanded by non 

real-time tasks (Indumathi and Murugesan , 2010; Zhang  and Burns , 1994 a; Zhang  and 

Burns , 1994 b ; and Regnier,  and  Lima, 2006).  An attractive MAC approach for such 

networks is the timed token protocol. Consequently, various versions of the timed token 

protocol have been incorporated into several high-bandwidth network standards (Nicholas  

and  Wei , 1994), such as,  IEEE802.4 Token Bus LAN (IEEE ,1995); Fiber Distributed 

Data Interface (FDDI) (Biao  and Wei , 1992; Shin . and Zheng , 1995; Kenneth   and 

Marjory , 1987; Grow , 1982 and Chan , Chen ., Cao  and Lee  , 1992); SAFENET (Dept. of 

Defense US ,1992) ; Manufacturing Automation Protocol (MAP)  (Mcguffin , Reid , and  

Sparks  ,1998) ; High-Speed Ring Bus (Uhlhorn , 1991), in PROFIBUS (Tovar , and 

Vasques ,1991); and in wireless networks (Lee,  Attias , Puri, Sengupta,  Tripakis,  and 

Varaiya  ,2001; Malpani , Vaidya , and Welch , 2001, and Willig ,2002). 

 

Recently, the Static-Threshold-Limited On-Demand Guaranteed Service Timed Token 

(STLODGSTT) protocol (Ozuomba  , Chukwudebeb , Obot , 2011) and Budget Sharing 

Token (BuST) Protocol are developed to improve on the ability of timed token protocol to 

support diverse traffic classes on the same LAN  (Franchino , Buttazzo , and  Facchinetti  , 

2007). The two protocols adopted different spare bandwidth reclaiming mechanisms. 

Though different, the two mechanisms can be combined to give higher throughput in certain 

network and traffic situations than any of the two protocols operating separately.  The new 

MAC protocol called Static-Threshold-Limited BuST Protocol  (STLB) protocol is analyzed 

and compared with STLODGSTT protocol. The comparison is with respect to the ability of 
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each of the protocol to support diverse traffic classes in the same LAN under varying 

network configurations.  

 

The rest of the paper is organized as follows. The network and message models are 

presented in Section 2 along with brief review of the STLODGSTT and  BuST   protocols 

(Ozuomba , Chukwudebeb , Obot , 2011 and (Franchino , Buttazzo , and Facchinetti , 2007). 

The STLB protocol   is presented and analyzed in Section 3. In section 4, the STLB protocol 

is compared with the STLODGSTT protocol. Finally, concluding remarks and 

recommendations for further studies are presented in Section 5. 

 

The Timely-Token Protocol and its Parameters 

Network Model 

 

The network model, as presented in (Ozuomba, 

Chukwudebeb, Obot, 2011) consists of a token ring 

network with N nodes as shown in Fig 1. Each node 

has a unique number in the range 0, 1, 2…N-1. For 

each node i, the next node along the unidirectional 

medium is station (i+1) or more appropriately node 

(i+1) mod N.  The token frame circulates around the 

ring from node i to nodes i + 1,  i + 2, … until node i + 

(N-1), then to nodes i , i + 1,  i+2,…,  helping to 

determine which node should send a frame of message 

among the contending nodes. A special bit pattern 

called token frame circulates around the ring from 

node i to nodes i + 1,  i + 2, … until node i + (N-1), then to nodes i , i + 1,  i+2,…,  helping to 

determine which node should send a frame of message among the contending nodes. Let wi 

denote the latency or walk-time between a node, i and its upstream neighbor node, (i + 1). 

The sum of all such latencies in the ring is known as the ring latency or the token walk-time, 

W, where           W   = 

( )

0

(wi

1Ni

i





)  (1) 

The ring latency, W denotes the token walk time around the ring when none of the nodes in 

the network disturb it (Biao, and Wei, 1992  and Ozuomba, and Chukwudebe , 2003). 

 

Message Model 

 

Messages generated in the system at run time may be classified as either synchronous (real-

time) messages or asynchronous (non real-time) messages (Ozuomba, Chukwudebeb, Obot, 

2011). Furthermore, each node, i in the ring has a single stream of synchronous messages, si , 

where si  is defined in terms of the tuple ;    si = { Ci , Pi , Di}, where:  

 Message Length, Ci , is the maximum amount of time required to transmit a stream 

message. This includes the time required to transmit both the payload data and 

message headers. 

 Period Length, Pi ,  is the minimum inter-arrival period between consecutive messages in 

stream, si at node i. If the first message of node i is put in the transmission queue at 

time ti,1 , then the j-th message in stream si will arrive at time ti,j = ti,1 + (j - 1) Pi, 

   Fig1 A 4-Station Token Ring Network 
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where j >1. For instance, if the first message arrives at time t, then the second 

message will arrive at t + Pi and the third message will arrive at t + 2Pi as shown in 

Fig 2. 

 Message Deadline, Di ,  is the relative deadline associated with messages in stream si, that 

is, the maximum amount of time that can elapse between a message arrival and the 

completion of its transmission. Thus, the transmission of the j-th message in stream 

si that arrives at ti,j must be completed no later than ti,j + Di, which is the message's 

absolute deadline. Again, as an example, if the first message in the message stream, 

si arrives at time t, then it must be transmitted not later than t + Di, as shown in Fig 

2.  

 
Fig 2:  Model for the Synchronous (or Real-Time) Message Stream, Si in Node I 

(Ozuomba , Chukwudebeb, Obot, 2011). 

 

The Timed-Token Protocol Parameters 

 

The parameters as presented in (Ozuomba , Chukwudebeb, Obot, 2011) includes the 

following: 

a) Target Token Rotation Time, (TTRT):    TTRT is the time needed by the token to 

complete an entire round-trip of the network.   The value of TTRT, denoted as  .  
b) Synchronous Capacity of Node i ( Hi ):  
    Hi  represents the maximum time for which a station, i is allowed to transmit synchronous 

messages during every token receipt. Then, according to (Ozuomba , Chukwudebeb, 

Obot, 2011); 

          H0 + H 1 +… H N-1 = ( )

0

(Hi

1Ni

i





)   = H 

    (2) 
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Period, Pi 
 

Message 1  

Deadline, Di 
 

Message 2  

Deadline, Di 
 

Ci Ci 

t 

Release Time, t of 

Message 1 of Real-

Time Message 

Stream, Si 

Release Time, t + Pi   

of Message 2 of Real-

Time Message 

Stream, Si 

Period, Pi 
 

t  t  + Di t + Pi      t + 2Pi   t + Pi  + Di 

Release Time, t + 

Pi   of Message 3 

of Real-Time 

Message 

Stream, Si 

Deadline of 

Message 1 

Deadline of 

Message 2 



European Journal of Mathematics and Computer Science  Vol. 2 No. 2, 2015 
  ISSN 2059-9951 
 

Progressive Academic Publishing, UK Page 4  www.idpublications.org 

                      Hi + wi =  i                     

(3) 

                     H + W       =  T  

   (4) 

                          A  =    
-  T                 (5)

 where A be defined as the total time units available to the asynchronous traffic in every 

cycle .  

Constraints: 

For proper operation of the timed-token protocol, the choice of values for   and T 

parameters must satisfy the Protocol Constraint and the Deadline Constraint   which 

according to (Ozuomba , Chukwudebeb, Obot, 2011)  is given as,  

       T  ≤   ≤ 
1,...1,0

Min
 Ni

(D i 

)        (6) 

c) Token Rotation Timer of Node i (TRTi ):  
TRTi is the cycle length or the time between two consecutive token receipts at node i.  

d) The Unused Synchronous Bandwidth  (ε ) 

According to (Ozuomba , Chukwudebeb, Obot, 2011),    

                           

hi = Hi  -  εi    (7) 

where  hi denotes  the used portion of Hi and   εi  the unused portion of  Hi time units 

reserved for the synchronous traffic in node i (where hi  ≤  Hi). Then, for a system 

that is lightly loaded with synchronous traffic, out of the Hi time units, only hi time 

units are used in node i leaving εi time units unused 

       εi   + εi  + … + εi = ε

    (8) 

e) An Asynchronous-Limit Variable of Node i ( THTi):  
     THTi  is used to control the amount of time for which node i can transmit 

asynchronous messages. 

 

2.4 Review of BuST Protocol and STLODGSTT Protocol  

 Generally, in the timed token protocols, there are two categories of spare bandwidth 

which can be reallocated to the asynchronous traffic. The two categories of spare 

bandwidth are; 

i.    The unallocated bandwidth per cycle, given as A =  - T  (which is the same as , A =  

 - H – W) 

ii.   The allocated but unused bandwidth, given ε = εi   + εi  + … + εi. . ε is the portion of 

the bandwidth allocated to the synchronous traffic but is not used by the 

synchronous traffic due to drop in the expected load level of the synchronous traffic. 

BuST and STLODGSTT protocols differ on how each protocol allows the nodes to exploit 

these spare bandwidth to transmit asynchronous traffic on each token receipt.   

 

In the BuST (Franchino , Buttazzo, and Facchinetti, 2007),   transmission of asynchronous 

traffic is done with the ε   spare bandwidth unused by real-time (synchronous) traffic. In 

essence, the Hi timed units of a node is shared between synchronous and asynchronous 

traffic.  When a node receives the token, it   transmits its synchronous traffic for hi time 

units where hi ≤ Hi. Then,  the asynchronous   messages in the node i, are  transmitted for 𝑒𝑖 
= 𝜀𝑖  time units, where 𝜀𝑖  = (Hi - hi ) time units . Essentially, the synchronous and the 

asynchronous traffic utilize the Hi time units in each node. The BuST protocol do not use 
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the A time units (where A =   - H – W).  In all, for the BuST protocol (Franchino , 

Buttazzo, and Facchinetti, 2007),    the total time units used for the transmission of data 

(synchronous and asynchronous) frames in any cycle is given as   ∑ (ℎ𝑖 + 𝑒𝑖)
𝑖 =𝑁−1
𝑖=0  =  ( h  + 

e ) ≤  H . Hence, at its best, the BuST protocol can have an average cycle length of H + W 

which is less than , the average   bandwidth available in every cycle (Ozuomba, 

Chukwudebeb, Obot, 2011).  

 

On the other hand, the STLODGSTT protocol uses  ai  time units in each node i, for the 

transmission of asynchronous traffic,   where ai  =  max( 0,  - ε  - ( ti -  ti-N)) +  AT , and  AT   

=   
N

T -  
  (Ozuomba, Chukwudebeb, Obot, 2011).  According to (Ozuomba, 

Chukwudebeb, Obot, 2011) ,  in each cycle, the total time units used for the transmission of 

asynchronous traffic is given as  ∑ (𝑎𝑖)
𝑖 =𝑁−1
𝑖=0    ≤  A time units (where A =   - H – W) .  

Also, in each cycle, the total time units used for the transmission of synchronous traffic is 

given as  ∑ (ℎ𝑖)
𝑖 =𝑁−1
𝑖=0  =   h   ≤  H , where h = H - ε  .  In all, for the STLODGSTT   the total 

time units used for the transmission of data (synchronous and asynchronous) frames in any 

cycle  is given as  ∑ (ℎ𝑖 + 𝑎𝑖)
𝑖 =𝑁−1
𝑖=0  =  ( h  + a ) ≤  (H + A ). Hence, at its best , the 

STLODGSTT can have an average cycle length of A  + H + W which is equal to  , 
maximum value of  bandwidth available in every cycle.  

 

However, since the STLODGSTT protocol does not use the   ε   time units, under load load 

of the synchronous traffic (h   ≤  H, and hence ε > 0) , the average cycle length for the 

STLODGSTT protocol drops by  ε time units to a value given as,  - ε    which is less that   
(Ozuomba, Chukwudebeb, Obot, 2011). In order to solve the problem, in this paper, the 

BuST protocol’s spare bandwidth allocation mechanism is incorporated into the 

STLODGSTT mechanism to give the new protocol with more robust bandwidth 

reclamation mechanism as presented in subsequent sections. 

 

The Static-Threshold-Limited BuST (STLB)  Protocol  

The STLB Algorithm  and Flowchart 

 

The flowchart of the STLB protocol is presented in Fig 3 while the detailed algorithm is 

given as Protocol PSB  MAC Algorithm. 

 

Protocol PSB (MAC Algorithm) 

PSB1:  NETWORK   INITIALISATION CYCLE 

 

During the first token rotation, to initialize timers, no station is allowed to transmit any 

packets. First, TTRT, that is   is defined to satisfy the deadline requirements of every 

synchronous message in the network. Then, the following two parameters are also defined, wi 

, Hi for 0 ≤ i ≤ N-1. In addition, hi is reset to zero.  So,   ε = 


 1Ni

i 0

(Hi) = iH
1N

i

  where εi  =  Hi  

for 0 ≤ i ≤ N-1, εi  = Hi  ;n = N and n i = 1 (for i = 0, 1,……N-1)                   

In summary, during the network initialization, the following parameters are defined, 

initialized or computed: 

INITIALIZATION CYCLE : 

PSB1.1  Define TTRT (that is 𝜏) and N 

PSB 1.2  Define wi for i = 0,1,...........N-1 
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PSB1.3  Define Hi for i = 0,1,............N-1 

PSB1.4    Initialize hi = 0 for I = 0,1, …………..N-1 

PSB1.4.1 Initialize 𝜀𝑖 = 𝜀𝑖̅ = Hi  for i = 0,1,...............N-1 

PSB1.4.2 Initialize 𝑒𝑖 = 0 for i = 0,1,...............N-1 

PSB1.4.3   e  = ( )

0

(ei

1Ni

i





)      

PSB1.5    Initialize a(i-N) = 0 for i = 0,1,.............N-1 

PSB1.6  

       PSB1..6.1   Compute 𝜀 = ( ) ε

0

( i

1Ni

i




) = H 

       PSB1..6.2   Compute  𝜀  ̅ =(∑ (𝜀𝑖̅)
𝑖=𝑁−1
𝑖=0   )  =  ( ) ε

0

( i

1Ni

i




)  -  ( )

0

(ei

1Ni

i





)     =  

H 

PSB1.7   Compute T =( ) wH

0

( ii

1Ni

i





) 

 

PSB1.8  Compute AT = 
𝜏−𝑇

𝑁
 

PSB1.9 Initialize Token rotation timer (TRTi)Timer 

PSB1.9.1   i = 0 

PSB1.9.2   TRTi = 0 

PSB1.9.3  Start TRTi; TRTi Counts up 

PSB1.9.4  i = i + 1 

PSB1.9.5  Pass the Token to Node i + 1 

PSB1.9.6  IF (i < N) then 

                  Goto Step PSB1.9.2 

                Else 

 Goto Step PSB2.1 

   End if. 

 

DATA TRANSMITION CYCLE, PART I:  TRANSMISSION OF SYNCHRONOUS 

FRAMES  

  

PSB2.1  Check Frames that arrives at Node i 

PSB2.2  IF (Frames is Token) then 

            Goto Step PSB2.5 

           Else 

            Goto Step PSB2.3 

           End if 

 

PSB2.3  Process Frame (Store, Ignore, etc.) 

PSB2.4  Goto Step PSB2.1 

PSB2.5   THTi = max(TTRT – 𝜀 − TRTi ,  0) 

PSB2.6  

PSB2.6.1   𝜀′ = 𝜀 −  𝜀i 
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PSB2.6.2   𝜀 ̅′ = 𝜀̅   −    𝜀𝑖̅ 
PSB2.7.1    TRTi = 0 

PSB2.7.2    Start TRTi 

PSB2.7.3     TRTi counts up 

PSB2.8 IF (TRTi ≤ Hi ) then 

               Goto StepPSB2.9 

               Else 

               Goto Step PSB2.12 

               End if 

PSB2.9      IF (Synchronous Frames are Available) then 

               Goto Step PSB2.10 

              Eles 

               Goto StepPSB2.11 

              End if 

PSB2.10    Transmit Synchronous Frames 

PSB2.11    Goto Step PSB2.8 

PSB2.12     hi = TRTi 

PSB2.13 

                               PSB2.13.1  𝑒′ = e − 𝑒𝑖 ;  
       PSB2.13.2   𝑒𝑖 = 0 

                               PSB2.13.3 TX =  TRTi , TRTi  counts up ;  

                               PSB2.13.4 IF ((TRTi ≤ Hi ) and (Asynchronous Frames are Available) ) 

then                             Transmit Asynchronous Frames ; 

                             𝑒𝑖 = 𝐻𝑖 − 𝑇X; 

                       End if 

   PSB2.14      𝑒 = e′ + 𝑒𝑖 
               PSB2.15     𝜀𝑖 = 𝐻𝑖 − ℎ𝑖 
               PSB2.16      𝜀 =  𝜀′ + 𝜀𝑖 

   PSB2.17     𝜀𝑖̅ = 𝐻𝑖 − ℎ𝑖 -  𝑒𝑖  ∴  𝜀𝑖̅ = 𝜀𝑖 -  𝑒𝑖 
   PSB2.18        𝜀 ̅  =    𝜀 ̅′ +   𝜀𝑖̅  (Goto Q3.1  ) 

 

DATA TRANSMITION CYCLE, PART II: TRANSMISSION OF ASYNCHRONOUS 

FRAMES  

PSB3.1   THTi = THTi + min(a1-N, AT) 

PSB3.2    ai = THTi 

PSB3.3   Start THTi, THTi counts down 

PSB3.4   IF (THTi > 0) then 

 Goto Step PSB3.5 

 Else  

 Goto Step PSB3.8 

 End if 

PSB3.5     IF (Asynchronous Frames are Available) then 

              Goto Step PSB3.6 

              Else 

              Goto Step PSB3.8 

             End if 

PSB3.6    Transmit Asynchronous Frame 

PSB3.7   Goto Step PSB3.4 

PSB3.8   ai = ai – THTi 

PSB3.9   ai-N = ai 
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PSB3.10     i = i + 1 

PSB3.11    i = (i mod N) 

PSB3.12      Pass the Token to Node i   (Goto PSB2.1  ) 

The flowchart of STLB Protocol  
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Static -Threshold-Limited Bust Protocol  
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Analysis of the STLB Algorithm 
The analysis of STLODGSTT protocol as presented in (Ozuomba  , Chukwudebeb , Obot , 

2011) applies to STLB protocol except that; 

a) In STLB,  ei  denote the portion of the Hi time units  that are actually used for 

transmitting asynchronous traffic  in station i; then e denote the total of ei  per  cycle . 

b) In the analysis of the STLB protocol, every occurrence of 𝜀𝑖 is replaced with 𝜀𝑖̅ ; and  

ε is replaced with 𝜺    ; where   

            𝜀𝑖 = Hi – hi 

   (9) 

  𝜀𝑖̅ = 𝜀𝑖 -  𝑒𝑖  = Hi – hi - ei   = Hi  - (hi + ei )  

  (10) 

          𝜀 =  ∑ (𝜀𝑖)
𝑖=𝑁−1
𝑖=0    = H – 

h    (11) 

Continuation of   Fig 3: Flowchart of the Static-Threshold-Limited 

Bust Protocol  
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  𝑒 =  ∑ (𝑒𝑖 )
𝑖=𝑁−1
𝑖=0       

(12)  

      𝜺 =  ∑ (𝜀𝑖̅)
𝑖=𝑁−1
𝑖=0 =  𝜀 – e = H – h – e  = H – ( h + e )      

(13) 

Consequently, following the analytical expressions for the STLODGSTT protocol as 

presented in (Ozuomba  , Chukwudebeb , Obot , 2011), the  performance parameters for 

STLB protocol can be stated as follows; 

Upper Bound On Cycle Length, max ( t i -  t i-N )    
According to (Ozuomba  , Chukwudebeb , Obot , 2011) , for STLODGSTT protocol 

Upper Bound On Cycle Length STLODGSTT protocol =     - ε    when  ε >  0    

(14)     
Upper Bound On Cycle Length STLODGSTT protocol =           when  ε = 0       

(15)     
Similarly, replacing ε in Equation(14) with 𝜺    gives  

Upper Bound On Cycle Length STLB protocol =     - 𝜺       when  𝜺  
 
 >  0            

(16)     

Now,   𝜺   =    𝐞 –  ε   where    e    ≤  ε, then ; 

      Upper Bound On Cycle Length STLB protocol =     + 𝐞 –  ε  where  e ≤  ε and  ε ≥ 0          

(17)     
                   Upper Bound On Cycle Length STLB   protocol =     when  e =  ε and  ε ≥ 0          

(18)     
For a network that is heavily loaded with asynchronous traffic, when the synchronous traffic 

fails to use up its H time units per cycle, in that case , ε ≥ 0 ,  for the  STLODGSTT 

protocol, the cycle length reaches a  maximum value of    - ε  time units since the 

STLODGSTT protocol does not allow the asynchronous traffic to use the spare bandwidth , ε 
left by the synchronous traffic. However, for the  STLB protocol, the cycle length reaches a 

higher  maximum value of       time units since the STLB protocol   allows the asynchronous 

traffic to use up all  the spare bandwidth , ε left by the synchronous traffic; this occurs in 

network that is heavily  loaded  with asynchronous traffic in which case, 𝐞 =  ε  , for all 

values of i. 

Average Cycle Length, (Ĉ) 

Let ĈSTLODGSTT   denote the Average Cycle Length, for STLODGSTT protocol and  ĈSTLB    

denote the Average Cycle Length  for STLB protocol. Then, according to (Ozuomba  , 

Chukwudebeb , Obot , 2011),  

   ĈSTLODGSTT   ≤  ( −  T)  +  (T −  ε   )        
(19) 

    ĈSTLODGSTT   ≤    − 𝛆          
(20) 

Similarly, replacing ε in Equation(19) with 𝜺    gives  

   ĈSTLB    ≤  ( −  T)  +  (T − 𝜺   )                
(21) 

   ĈSTLB    ≤   − 𝜺                   
(22) 

Now,  T − 𝜺   = T   +  𝐞 –  ε   where    e    ≤  ε 

 ĈSTLB    ≤   ( −  T)    +  (T −  ε   ) +  e where e    ≤  ε       

(23) 
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  ĈSTLB    ≤     –  ε +  e   where   e    ≤  ε        

(24) 

Hence,         ĈSTLB      =  ĈSTLODGSTT  +  𝐞           
(25) 

The Average Asynchronous Traffic Time Units Per Cycle (AV ) 

Let 𝐀𝐕STLODGSTT  denote the average time units used in the STLODGSTT protocol to 

transmit  asynchronous in every cycle and  𝐀𝐕STLB    denote the denote the average time units 

used in the STLB to transmit  asynchronous traffic in every cycle. Now, according to 

(Ozuomba  , Chukwudebeb , Obot , 2011), 

   ĈSTLODGSTT   ≤  ( −  T)  +  (T −  ε)      (26) 

In the expression for ĈSTLODGSTT,   ( −  T)  , denote the average value of the asynchronous 

traffic delivered per cycle  through the best-effort mechanism , while (T −  ε) denote the 

average value of the synchronous traffic transmitted per cycle  through the guaranteed service 

mechanism.  Consequently, the average time units used in the STLODGSTT protocol to 

transmit asynchronous traffic in every cycle is given as (Ozuomba  , Chukwudebeb , Obot , 

2011), 

                                                        𝐀𝐕STLODGSTT  =   ( −  T)       (27) 

Similarly, for the SLTB protocol,  

                                            ĈSTLB   ≤  ( −  T)  +  (T − 𝜺   )       (28) 

In the expression for ĈSTLB, ( −  T)  , denote the average value of the asynchronous traffic 

delivered per cycle through the best-effort mechanism,  while (T − 𝜺   ) denote the average 

value of the synchronous and asynchronous traffic transmitted per cycle through the 

guaranteed service mechanism.  The two components of  (T − 𝜺   ) can be separated by 

replacing 𝜺    with    𝐞 –  ε   where    e    ≤  ε. This gives,  

      T − 𝜺   = T  –  ε   +  𝐞 where    e    ≤  ε     (29) 

In this case, e is the asynchronous traffic delivered through the guaranteed service mechanism 

while the  T  –  ε   is the  synchronous traffic delivered through  the guaranteed service 

mechanism.  Hence,   

                                         ĈSTLB    ≤   ( −  T)    + 𝐞   +  (T −  ε   ) where e    ≤  ε    (30) 

Therefore,                                   𝐀𝐕STLB  =   ( −  T)  +  𝐞       (31) 

It can be seen that STLB protocol delivers additional 𝐞  time units of asynchronous traffic on 

every cycle more than the STLODGSTT protocol.  

Comparison Of The Performance Of  STLB Protocol and STLODGSTT Protocol 
Numerical Example  
Consider a ring network with any number of stations; the network uses the STLODGSTT 
protocol and the STLB protocol for its MAC , where the protocol parameters are given as 
follows:   = 100, W  = 4  for all the nodes, H = 80 and hence T = 84. Now, the network 
operates under heavy load of asynchronous traffic but with variable load of synchronous 
traffic. With these given parameters and load configurations, the performance of the 
protocols vis avis the  Average Cycle Length and the Average Asynchronous Traffic   Per 
Cycle computed with respect to the variation in the Ɛ, are given in Table 1 and Table 2 
respectively, as well as in Fig 4a and Fig 4b respectively.  
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RESULTS  
Table 1: Average Cycle Length 

Vs. Ɛ (where  = 100, H = 

80, T = 84)  

Ɛ h e Ĉ𝐒𝐓𝐋𝐎𝐃𝐆𝐒𝐓𝐓 Ĉ𝐒𝐓𝐋𝐁 
0 80 0 100 100 

8 72 8 92 100 

16 64 16 84 100 

24 56 24 76 100 

32 48 32 68 100 

40 40 40 60 100 

48 32 48 52 100 

56 24 56 44 100 

64 16 64 36 100 

72 8 72 28 100 

80 0 80 20 100 
 

 

 

Table 2 : Average Asynchronous 
Traffic   Per Cycle Vs Ɛ (where  = 

100, H = 80, T = 84) 

Ɛ h E 

   
𝐀
𝐕
𝐒
𝐓
𝐋
𝐎
𝐃
𝐆
𝐒
𝐓
𝐓

 

𝐀
𝐕
𝐒
𝐓
𝐋
𝐁

 

0 80 0 16 16 

8 72 8 16 24 

1
6 64 16 16 32 

2
4 56 24 16 40 

3
2 48 32 16 48 

4
0 40 40 16 56 

4
8 32 48 16 64 

5
6 24 56 16 72 

6
4 16 64 16 80 

7
2 8 72 16 88 

8
0 0 80 16 96 
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Fig 4a Graph of Average Cycle   Length, (ĉ) 
Vs. ε (where   = 100, H = 80, T = 84)  
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DISCUSSION OF RESULTS 

 

a. The Average Asynchronous Traffic Time Units Per Cycle  
 

Table 1 shows that STLB protocol maintains maximum value for average cycle  length 

irrespective of the variations in the load level of the synchronous traffic from a maximum 

value of 80 (h = H = 80 )  to its minimum value of 0 (h = 0) . This is because when a network   

is heavily loaded with asynchronous traffic, e = Ɛ,  as can be seen in Table 1 and Fig 4a. That 

means, all the spare bandwidth left by the synchronous traffic are reallocated to the 

asynchronous traffic, as shown in Table 1 and Fig 4a. Hence, as h drops from 80 to 0,  Ɛ  and 

hence e increases accordingly , maintaining the overall throughput at its maximum attainable 

level.  

 

On the other hand,  for the STLODGSTT protocol, the average cycle  length drops as   the 

load level of the synchronous traffic drops. Specifically,   in Table 1,   ĈSTLODGSTT    drops 

from a maximum value of 100 to 20,  as  h drops from  its maximum value of 80 (h = H = 80 

)  to  its minimum value of  0 (h = 0) .  In other words, STLB protocol is more effective in 

utilizing the available bandwidth than the STLODGSTT protocol. 

 

b. The Average Asynchronous Traffic Time Units Per Cycle  
 

From Table 2, STLODGSTT protocol maintained a minimum value of 16 for the average 

asynchronous traffic per cycle, irrespective of the variations in the load level of the 

synchronous traffic from 80 (h = H = 80 )  to  0, (h = 0) . This is because, even if   the 

network is heavily loaded with asynchronous traffic, the STLODGSTT protocol does not 

allow the asynchronous traffic to use the spare bandwidth, Ɛ left by the synchronous traffic. 

In essence, the STLODGSTT protocol restricts the asynchronous traffic to only the  − 𝐓 

time units (where  − 𝐓 = 𝟏𝟎𝟎 − 𝟖𝟒 = 𝟏𝟔) , as can be seen in Table 2 and Fig 4b. 

 

On the other hand, for the STLB protocol, the average asynchronous traffic transmitted in 

every cycle   increases as   the load level of the synchronous traffic drops. Specifically, the 

AVSTLB    increases from   a minimum value of 16 when h  is at its maximum value of 80 (h =  

H =  80 )  ; to a maximum value of 96  when h  is at its minimum value of  0 (h = 0 ).  In 

other words, STLB protocol is more effective in utilizing the spare bandwidth for 

transmitting additional asynchronous traffic.   

 

CONCLUSION  

 

In this paper, a Static-Threshold-Limited BuST Protocol (STLB) protocol was developed to 

improve on the ability of the timed token protocol to utilize spare bandwidth in the occasion 

of fluctuating load levels of the synchronous traffic. The improvement that can be achieved 

with the new MAC protocol was demonstrated through analytical expressions and numerical 

example. Specifically, with the STLB protocol, the spare bandwidth left by the synchronous 

traffic is reallocated to the asynchronous traffic without violating the stringent time 

constraints required by the synchronous traffic. In essence, with STLB protocol, higher 

throughput can be realized than is obtainable in the existing Static-Threshold-Limited On-

Demand Guaranteed Service Timed Token (STLODGSTT) protocol from which STLB 

protocol was developed.  
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RECOMMENDATIONS 

 

The STLB protocol is developed and analyzed under heavy load of asynchronous traffic. 

However, with respect to the asynchronous traffic, heavy load situations are of different 

types. In the present analysis, all the nodes are assumed to be heavily loaded with 

asynchronous traffic. Such is the case of uniform heavy load. There is ongoing research by 

the authors to examine the performance of timed token protocols under non uniform heavy 

load of asynchronous traffic. In such situation, not all the nodes are heavily loaded with 

asynchronous traffic. Preliminary results from the study of other versions of the timed token 

protocols indicate that their performance differ significantly when examined under uniform 

and non uniform heavy load situations. It is therefore expedient that the STLB protocol 

should also be studied under non uniform heavy load of asynchronous traffic. 
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