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ABSTRACT 

 

The increase in the utilization of high performance equipments has necessitated the use of 

laminated beams in aerospace engine, machine structures and electronic devices in order to 

dampen vibration and reduce noise. In such equipments, two laminates are pressed together 

and the occurrence of micro interfacial slip between these two laminates helps to effectively 

dissipate any unwanted vibration or noise. Also, when such structure are subjected to either 

static or dynamic loading, non-uniformity in interfacial pressure have significant effect on 

both the energy dissipated and the logarithmic damping decrement  associated with the 

mechanism of slip damping. Thus, laminated beams can be effectively used to increase the 

level of damping available in such a mechanism. Hence, in this work, with the aid of Finite 

Difference Method, the effects of laminates on the energy dissipation due to frictional 

damping between the two laminates are investigated, so also the effects of the material 

properties on the dynamic behaviour and energy dissipation are also analysed. 
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INTRODUCTION 

 

The mechanism of damping as a means of controlling undesirable effect of vibration and 

noise has received considerable research attention in the past three decades. This has 

significantly resulted in considerably intense research in the dynamic behaviour of laminates. 

In aerospace engine, machine structures and also in electronic devices, laminated beams are 

used in the damping of vibration and the reduction of noise in electronic systems and devices. 

In such equipments, two laminates are pressed together and the occurrence of micro 

interfacial slip between these two laminates helps to effectively dissipate any unwanted 

vibration or noise. Also, when such structure are subjected to either static or dynamic 

loading, non-uniformity in interfacial pressure have significant effect on both the energy 

dissipation and the logarithmic damping decrement associated with the mechanism of slip 

damping, thereby damping response caused by the lamination of these beams is of great 

importance. Modeling plays a crucial role in the controlling and optimizing of engineering 

applications by providing means of better understanding of the involved phenomena with 

reduce cost of investigation, and on improving the capacity of predicting the dynamic 

response.  
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Hence, finite difference method was used in the modelling of effect of laminates on the 

energy dissipation due to frictional damping between the laminates, so also the effect of the 

material properties on the dynamic behaviour. 

 

LITERATURE REVIEW 

 

One of the pioneer works of Goodman and Klumpp(1952) was on the analysis of slip 

damping with reference to turbine blade vibration, and in the previous work Masuko (1973), 

Gould and Mikic (1972),  Motosh (1975), M., Nishiwaki et al (1978, 1980), Ziada  and Abd 

(1980) several studies were carried out on the damping capacity and pressure distribution of  

jointed structures under uniform or constant intensity of pressure distribution at the interface. 

Nanda and Behera (1999, 2000, 2006) studied on damping in layered and jointed structures 

and relaxing the restriction of uniform interfacial pressure to allow for more realistic pressure 

profiles that are encountered in practice.  

 

The studies of structural damping in laminated beams due to interfacial slip had earlier been 

carried out by Hansen and Spies (1997), while Kapuria and Alam (2006) presented efficient 

layerwise finite element model for dynamic analysis of laminated piezoelectric beams. 

 

Damisa (2007, 2008) Olunloyo (2007) presented the static and dynamic analysis of slip 

damping in clamped layered beams with non-uniform pressure distribution at the interface. In 

particular, whereas the investigation in Damisa, Olunloyo,  Osheku, and Oyediran [1, 3] was 

limited to the case of linear pressure profile, the static analysis in in Damisa, Olunloyo,  

Osheku, and Oyediran [2] included other forms of interfacial pressure distributions such as 

polynomial or hyperbolic representations and the results obtained demonstrated that the 

effects of such distributions in comparison with the linear profile were largely incremental in 

nature and no fundamental differences were found.  The results of the analysis of the 

cantibeam in [1–3] revealed that when the beam laminates are of the same material and 

thickness, non-uniformity in interface pressure can for example have significant effect on the 

mechanism of slip damping for static load while the energy dissipation and the logarithmic 

damping decrement associated with dynamic loads are significantly influenced by the nature 

of the interfacial pressure profile between the laminates. Bassiouni et al. (1999) used a finite 

element model to obtain the natural frequencies and mode shapes of laminated composite 

beams. A formulation for the exact dynamic stiffness matrix for symmetric and 

unsymmetrically laminated beams has been derived using the exact shape functions for the 

deflection and bending slope of composite laminated beam elements (Abramovich et al., 

1995; Eisenberger et al., 1995).   

 

Later, Khdeir and Reddy (1997) used the state-space concept in conjunction with the Jordan 

canonical form to solve the governing equations for the bending of cross-ply laminated 

beams. Kam and Chang (1992) studied the bending and free vibration behavior of laminated 

composite beams using First-order Shear Deformation Theory (FSDT) and Higher-order 

Shear Deformation Theory (HSDT).  

 

Kadivar and Mohebpour (1998) studied the finite element dynamic response of an 

unsymmetrically laminated composite beam subject to moving loads. Cho and Averill (1997) 

developed a beam finite element based on a new discrete layer laminated beam theory with 

sublaminate first-order zig-zag kinematic assumptions for both thin and thick laminated 

beams.  
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Robaldo (2006) and Ballhause (2005)separately investigated the ESL theories and layerwise 

approaches for the analysis of multilayered plates integrated with piezoelectric elements. 

Marurb and Rae (1998) used higher order refined theory analytical solution to the dynamic 

analysis of laminated beams while Rahman and Alam (2012) used zigzag theory to study the 

dynamic analysis of laminated smart beams. 

 

In this paper, investigation was carried out on the effect of laminates on energy dissipation 

due to frictional damping between the two laminates, and also on the effect of material 

properties on the dynamic behavior and energy dissipation. 

 

MATHEMATICAL MODEL ASSUMPTIONS 

 

The following assumptions have been made for deriving the equations: 

 

 That both layers are assumed to bend according to Bernoulli-Euler’s theory that a 

plane cross-section originally plane remains plain and normal to the longitudinal 

fibres of the beam after bending.  

 The Shear effect in the layers are neglected and only bending and extensional effects 

are considered.  

 The transverse displacement at a section is assumed to be constant along the 

thickness.  

 A continuity of displacements at the interfaces is assumed.  

 All displacements are assumed small, as in linear elasticity.  

 The material of the visco-elastic layer is assumed to be linear, that is, properties are 

strain independent.  

 

FREE BODY DIAGRAMS 
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Figure 2:  Free body diagram showing the Upper Laminate 

 

 

II Lower Laminate 
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Figure 3: Free body diagram showing the lower laminate      
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Figure 4: Free body diagram of Laminated Beam 
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GOVERNING EQUATIONS 

 

Upper Laminate  

The governing equation of motion 

 

𝐸1 𝐼1
𝜕2𝑊1

𝜕𝑥4   +   ρ1bh1 +
𝜕2𝑊1

𝜕𝑡2 - 𝜇21b
ℎ1

2

  𝜕𝑃21

𝜕𝑥
= 0………. (1) 

 

Lower Laminate 

 

The governing equation of motion 

𝐸2 𝐼2
𝜕4𝑊2∗

𝛿𝑥4
+ 𝑝2bh2

𝜕2𝑊1

𝜕𝑡2
−  𝜇21b 

ℎ2

2

  𝜕𝑃21

𝜕𝑥
  =  ………..(2) 

 

The initial conditions of the laminates are  

 t = 0,  𝑊1 =   𝑊2  =    0,  
𝜕𝑊1

𝜕𝑡
= 

𝜕𝑊2

𝜕𝑡
= 0…………… (3) 

 

The boundary conditions for the laminates 

 x = 0  𝑊1 =   𝑊2  =    0,  
𝜕𝑊1

𝜕𝑥
= 

𝜕𝑊2

𝜕𝑥
= 0…………… (4) 

 

x = L,
𝜕2𝑊1

𝜕𝑥
 =

𝜕2𝑊2

𝜕𝑥
 =   0 ,

𝜕3𝑊1

𝜕𝑥3  =
𝜕3𝑊2

𝜕𝑥3  =  0………(5) 

 

Using the following Non-dimensional parameters 

W =
𝑤

�̅�
,   X =   

𝑥

�̅�
,  𝜏= √

𝑃𝑏ℎ𝑋4

𝐸𝐼
t, P = 

𝜇𝑏ℎ𝑋4

2𝐸𝐼�̅�
P... …….…(6) 

 

and assuming a linear pressure variation,  

P =  𝑃0(1+
𝑥

𝐿
) ………………………………………. (7) 

 

Using finite difference method for equation (1) 

𝐸1𝐼1[
(𝑊1𝑖+2

𝑛 )−4(𝑊1𝑖+1 
𝑛 )+6(𝑊1𝑖

𝑛)−4(𝑊1𝑖−1
𝑛 )+(𝑊1𝑖−2

𝑛 )

(∆𝑥4)
] +  𝜌1𝑏ℎ1[

(𝑊1𝑖
𝑛+1) −2(𝑊1𝑖

𝑛)  +(𝑊2𝑖
𝑛−1)

∆𝑡2 ] – 
𝜇𝑏ℎ1

2
[

𝑝0

𝐿
 ] 

= 0 ………….. (8) 

 

Similarly, for equation (2) 

𝐸2𝐼2[
(𝑊2𝑖+2

𝑛 )−4(𝑊2𝑖+1
𝑛 )+     6𝑤2𝑖

𝑛 −4(𝑊2𝑖−1
𝑛 )+(𝑊2𝑖−2

𝑛 )

(∆𝑥4)
]+ 𝜌2𝑏ℎ2[

(𝑊2𝑖
𝑛+1) −2(𝑊2𝑖

𝑛)  +(𝑊2𝑖
𝑛−1)

∆𝑡2  ] – 
𝜇𝑏ℎ2

2
[

𝑝0

𝐿
 ] 

= 0 ………….. (9) 
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RESULTS AND DISCUSSIONS
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From the results shown above, the damping reduces with increase in the coefficient of 

friction, while the dynamic deflection increases with the length of the laminated beam for 

different interfacial pressure. It was well known that a negative pressure gradient in a 

cantilever beam tends to increase the level of energy dissipation whereas an enhanced 

frequency ratio of the driving load tends to reduce the amount of energy dissipation that can 

be arranged via slip at the laminate interface. These observations however assume that both 

upper and lower laminates are of the same thickness and are made from the same material. 

When such restrictions are removed, two new effects arise and are the subject of this paper. 

Our findings in fact confirm that each of these factors can independently be exploited to 

enhance the level of energy dissipation that can be arranged. In other words such increases 

can be arranged either by using different materials for the upper and lower laminates in a 
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prescribed fashion or by retaining the same material for both laminates but varying the 

individual ratios of the laminate thicknesses in a defined manner. Another deduction from the 

present work is that for effective energy dissipation, it is better to simultaneously play with 

choice of the laminate materials and their thickness ratios rather than thinker with any one of 

them by itself. In fact there are many instances when choice of material alone eclipses 

whatever gains can be made from playing with interfacial pressure gradient. This underscores 

the quest in the search for composites in the construction of such laminates. The strategy here 

is to exploit the advantage of composite structures to dissipate vibration energy via slip 

damping especially in aerodynamic structures where the effect of weight of structural 

member becomes significant. 

 

CONCLUSION AND FUTURE WORK 

 

In this paper the problem of using a layered structural member as a mechanism for dissipating 

unwanted vibration or noise has been revisited, be it in an aerodynamic or machine structure. 

Earlier work had established that some of the factors influencing the level of energy 

dissipation include the nature of the pressure distribution profile at the interface of the 

laminates as well as the nature of the external force to which the structure is subjected. The 

conclusion therefore, is that for maximum energy dissipation, laminates of different materials 

and of different thicknesses is required. This makes the use of composites beams inevitable. 

These results can be positively exploited in the design of aerodynamic and machine 

structures.Hence, it will assist the product designer consider the use of laminated metal 

material in place of traditional sheet metal thereby enabling various practical modeling 

techniques to be used both as a damping prediction and design optimization tool. This 

complexity offers more design flexibility as the thickness and type of the damping core as 

well as the constraining layers can be altered to optimize effectiveness of the laminated metal 

product. 
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