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ABSTRACT 

 

The numerical solution has been obtained of the governing equations for the steady, 

incompressible fluid flow due to a stretching cylinder. The numerical results are calculated, 

by using SOR method and Simpson's (1/3) rule, for the range 0.1 to 100 of the parameter R. 

The accuracy of the results is checked very carefully by performing calculations on three 

different grid sizes and comparing them with the know results. 

 

AMS Subject Classification: 76D99, 76M20, 65N22. 

Keywords: Newtonian Fluids, Stretching Cylinder and SOR Iterative Procedure. 

 

INTRODUCTION 

 

The fluid dynamics due to a stretching surface is important in extrusion processes. Crane [1], 

discussed a closed form exact solution of the Navier-Stokes equations subject to two 

dimensional stretching of a flat surface. Brady and Acrivos [2], examined the exact similarity 

in solutions of a flow inside a stretching channel and inside a stretching cylinder. Crane [3], 

again found the boundary layer solution outside a stretching cylinder. Kuiken [4] and Banks 

[5], studied the two-dimensional boundary layer due to non-uniform stretching. Wang [6] 

considered the two-dimensional stretching of a surface in a rotating fluid. The three-

dimensional flow subject to a stretching flat surface was studied by Wang [7]. Also, Wang 

[8] solved the problem of the exterior fluid flow due to the extrusion of hollow tubes. 

 

In the present paper, Wang’s [8] work is extended to large values of the Reynold number R 

using different numerical techniques. The numerical techniques used in the present work are 

straightforward and easy to program. Wang [8] has used the Runge-Kutta method, which is 

quite laborious and not straightforward for solving the boundary value problems. The basic 

analysis of this problem is presented. The finite difference equations are obtained and solved 

by using SOR iterative procedure and the Simpson’s (1/3) rule, subject to the appropriate 

boundary conditions. The results are given in tabular and graphical form, and compared with 

previous results. 

 

BASIC ANALYSIS 

 

The Navier-Stokes equation and continuity equation for steady and incompressible flow in 

the absence of the body force are given by 

 VVVp )(
1 2  


,      (1) 

 0 V ,        (2) 

where ,  and V are density, kinematics viscosity and velocity of the fluid respectively. 
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Wang [8] obtained the equations of motion for the flow of fluid due to a stretching cylinder. 

He used the cylindrical coordinate system (r,,z) such that the cylinder is described with the 

radius r = a.  

 

Let u and w are the velocity components in the r and z directions, respectively then the 

equation (1) and (2) take the following form: 
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with continuity equation 

 01 









z

w

r

u

r
       (5) 

where the subscripts denote the partial differentiation with respect to space coordinates,  is 

the density,  p the pressure and   the coefficient of kinematics viscosity. 

 The equations (3) to (5) are to be solved subject to the following boundary conditions: 

 when   r= a,  u=0,  w=2kz      when  

 r=,   u=0       (6) 

where k is a positive constant of dimension  [1/Time]. 

 

We now use the similarity transformations to make the equations of motion in dimensionless 

form as follows. 

u= -ka(f ()/  ) and    w= 2kf 

()z,    (7) 

where =(r/a)
2
 is the dimensionless variable. 

The equation (5) is satisfied and the equation (3) and (4) by using (7) become: 

 )2( fffRff  ,     (8) 
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Here 
2
2kaR   is the Reynolds number, where a is the radius of the cylinder,  the coefficient 

of kinematics viscosity and k the given constant.  

 In view of (7), the boundary conditions (6) take the form: 

  =1:  f = 0,  f = 1 

  : f = 0.      (10) 

 

In order to solve numerically, it is convenient to reformulate the problem by using the 

following transformation: 

 
xe         (11) 

Thus the equation (8) and boundary conditions (10), due to (11), become 

 )2(2 fffffRfff     (12) 

and 

x=0:  f = 0,  f = 1 
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  x:  f = 0,      (13) 

where here the prime denotes differentiation with respect to x. 

In order to treat the equation (12) numerically we write it into two equations as follows: 

f = p,        (14) 

)(2 2 fppfpRppp       (15) 

The boundary conditions (13) now become: 

x=0:  f = 0,  p= 1 

 x:  p= 0.      (16) 

Now, if we approximate the equation (15) by central difference approximation at a typical 

point x = xn of the interval [0,), we obtain 
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where h denotes a grid size. For computational purposes, we shall replace the interval [0,) 

by [0, ), where  is a sufficiently large. 

 

We now solve numerically the first order ordinary differential equations (14) and the finite 

difference equation (17) at each interior grid point of the interval. The equation (14) is 

integrated by the Simpson’s (1/3) rule, with the formula given in Milne, whereas the equation 

(17) is solved by using SOR iterative procedure, subject to the appropriate conditions. The 

pressure p can be calculated by integrating (9). 

 

DISCUSSION ON RESULTS 

 

Calculations have been carried out to obtain numerical solutions of the equations (14) and 

(17) by using Simpson’s (1/3) Rule and SOR iterative procedure. In order to check the 

accuracy of the numerical results, they have been calculated on three different grid sizes. 

Also, the results have been compared with the previous results by Wang [8] and are found to 

be in good agreement. 

 

The effects of the flow parameters namely R and Pr have been examined for the velocity and 

temperature profiles. The results have been presented in tabular as well graphical forms. The 

comparison of the present results with the previous results by Wang [8] is given in Table 1 to 

Table 3. The Table 1 shows that all the values of )1(f  are negative that means, the fluid is 

under the action of a dragging force due to stretching surface. Figure 2 demonstrate )(f  for 

various values of R. Figure 1 show )(f   for different values of R. The velocity gradient also 

increases for increasing values of R as can be seen in Figure 1. It is worth mentioning that the 

velocity field is not affected by Prandtle number Pr.  

 

The Figure 3 and Figure 4 demonstrate the temperature distributions for Pr 0.7  (such as 

air) and Pr 7  (such as water) for a fixed value of R. In both the figures ( )  decreases and 

then becomes zero at a large  in both the cases. This situation causes the increase in wall 

temperature gradient and thus the surface heat transfer rate is increased.  
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Table 1: Comparison of )(f  for possible values of Reynolds number R. 

 

 
  

R=2.0 R=5.0 R=10.0 

Present Wang Present Wang Present Wang 

-1.2 1.055091 --- 0.497766 --- 0.282937 --- 

-1.0 1.050510 --- 0.496125 --- 0.284980 --- 

-0.5 1.053649 1.0277 0.508461 0.5027 0.293924 0.2999 

0.0 1.105823 1.0983 0.592566 0.5933 0.385362 0.3857 

0.5 1.252686 1.2524 0.828878 0.8291 0.675645 0.6757 

1.0 1.516071 --- 1.201347 --- 1.100102 --- 

1.2 1.649482 --- 1.371547 --- 1.284416 --- 

 

Table 2: Comparison of )1(f   for possible values of Reynolds number R. 

 

 
  

R=2.0 R=5.0 R=10.0 

Present Wang Present Wang Present Wang 

-1.2 0.798736 --- 0.838972 --- 0.843940 --- 

-1.0 0.890127 --- 0.971818 --- 0.995908 --- 

-0.5 1.184350 1.1810 1.485243 1.4811 1.682201 1.6776 

0.0 1.595297 1.5941 2.410499 2.4175 3.318044 3.3445 

0.5 2.141963 2.1468 3.882652 3.9308 6.435548 6.6222 

1.0 2.818490 --- 5.774575 --- 10.371458 --- 

1.2 3.118564 --- 6.591984 --- 11.996690 --- 

 

Table 3: Compression of )1(   for possible value of R=10. 

 

Pr  Present Wang 

0.1 1.050543 --- 

0.7 1.702547 1.5683 

2.0 3.026962 3.0360 

7.0 6.155753 6.1592 

10.0 7.462454 7.4668 

15.0 9.258509 --- 
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Figure 1: The velocity profile ( )f  for   R=0.1, 

2, 5 and 20 from top to bottom. 
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Figure 2: The similarity profile )(f  for 

R=0.1, 2, 5, 10 and 20 from top to bottom. 
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Figure 3: Temperature profile )(  for  R=10, 

Pr=7  
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Figure 4: Temperature profile )(  for R=10, 

Pr=0.7. 
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